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ABSTRACT

This dissertation presents the author's design, implementation, and evaluation 
of active learning animation software for teaching the theory of computation. The 
software builds on techniques used in traditional textbooks, in which concepts are 
illustrated with static diagrams. Developers of animation software have worked to 
make these traditional static diagrams come to life using motion, color, and sound 
(a process commonly referred to as animation), allowing students to manipulate 
and explore concepts in a fully interactive graphical environment. However, the 
mere vivification of static diagrams exploits only a small amount of the potential 
that modem personal computing environments provide. It is possible for animation 
software to make further use of this potential by providing learning activities that 
would be impractical or even impossible to duplicate using traditional methods.

To support this claim, the author developed software for simulating finite state 
automata (FSAs). the FSA Simulator. The FSA Simulator is designed for a variety 
of uses from in-class demonstrations to integration into a comprehensive "hypertext- 
book." Although many others have developed similar software, the FSA Simulator 
advances a step beyond conventional automaton simulations. Using algorithms that 
compute the closure properties of regular languages, the FSA Simulator can be used 
to create interactive exercises that provide instant feedback to students and guide 
them toward correct solutions.

The effect of the FSA Simulator on students' learning was evaluated in prelimi­
nary experiments in undergraduate computer science laboratories at Montana State 
University. While these initial investigations cannot be considered either compre­
hensive or conclusive, they do indicate that use of the FSA Simulator significantly 
improves students' performance on exercises and may have some positive impact on 
students' ability to construct FSAs without the assistance of the Simulator.

The development of the FSA Simulator represents significant progress in creat­
ing and evaluating active learning animation software to support the teaching and 
learning of the theory of computation. The author has demonstrated that such soft­
ware can be created, that it can be effective, and that students find such software 
more motivating than traditional teaching and learning resources.
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CHAPTER 1 

INTRODUCTION

This dissertation presents the author’s design, implementation, and evaluation 

of active learning animation software for teaching the theory of computation. The 

software builds on techniques used in traditional textbooks, in which concepts are 

illustrated with static diagrams. Developers of animation software have worked to 

make these traditional static diagrams come to life using motion, color, and sound 

(a process commonly referred to as animation), allowing students to manipulate 

and explore concepts in a fully interactive graphical environment. However, the 

mere vivification of static diagrams exploits only a small amount of the potential 

that modern personal computing environments provide. It is possible for animation 

software to make further use of this potential by providing learning activities that 

would be impractical or even impossible to duplicate using traditional methods.

To support this claim, the author developed software for simulating finite state 

automata (FSAs). the FSA Simulator. The FSA Simulator is designed for a variety 

of uses from in-class demonstrations to integration into a comprehensive hypertext­

book [15. 35]. Although many others have developed similar software (for example. 

[74. 5. 67. 36. 70]). the FSA Simulator advances a step beyond conventional automa­

ton simulations. Using algorithms that compute the closure properties of regular 

languages, the FSA Simulator can be used to create interactive exercises that pro­

vide instant feedback to students and guide them toward correct solutions.

The effect of the FSA Simulator on students' learning was evaluated in prelimi­
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nary experiments in undergraduate computer science laboratories at Montana State 

University. While these initial investigations cannot be considered either compre­

hensive or conclusive, they do indicate that use of the FSA Simulator significantly 

improves students' performance on exercises and may have some positive impact on 

students' ability to construct FSAs without the assistance of the Simulator.

Enhancing Computer-Aided Instruction with Active Learning

As personal computers have improved and become ubiquitous over the years, 

their potential for enhancing education has increased dramatically. From their 

earliest days, personal computers have been integrated into educational settings in 

one form or another. In the beginning, they were most often used in elementary 

school classrooms to aid rote memorization tasks such as learning basic arithmetic 

and spelling. As their capabilities increased, personal computers equipped with CD- 

ROM drives began to be used as reference tools. Electronic books and educational 

multimedia presentations were provided for online use. Many science labs were also 

equipped with computerized measurement devices. In recent years, especially with 

the arrival of the Internet, computers have routinely been used by students for doing 

research and collaborating with others through e-mail and other forms of electronic 

communication.

So far. most applications of computer technology within education have largely 

been passive. For example, electronic encyclopedias include photographs, diagrams, 

movies, and sound clips, but fewr accompanying opportunities for students to in­

teract with the subject they are studying in a way that promotes active learning. 

Passive learning programs tap  into only a small portion of the promise for enhanced
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learning afforded by personal computers. It is well known that students learn better 

when they are engaged in active, rather than passive, learning [11. 52]. Thus, it is 

imperative that interactive learning software be developed in order to exploit the 

full potential of computer-enhanced learning.

Active Learning Software

In contrast to the computer-based passive learning environments alluded to 

above, active learning software provides opportunities for a student to directly 

control the animation of a concept being learned. The most elementary means 

of providing a student with active learning opportunities is to allow the student 

to submit differing inputs for the system to use during an animation of a concept. 

For example, a finite state automaton animator might allow a student to input a 

string for the automaton and then watch as the automaton processes it. While 

the software is animating the concept (e.g.. a finite state automaton) based on the 

student's input, other opportunities for interaction are also provided: The student 

can often control the speed and appearance of the animation or even choose among 

several different views of the concept being animated.

More sophisticated active learning features include such things as allowing the 

learner to change the model being animated on the fly. providing facilities to a 

learner to allow construction of entirely new models for animation, and provid­

ing feedback to students to guide them toward successful completion of exercises. 

Examples of these features are provided as part of this dissertation.

Incorporating active learning into teaching and learning resources has numerous 

benefits. There is some evidence that active learning anim ation software, when
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used properly, can improve student learning (see page 35). Even if animation soft­

ware does not directly improve learning, its use often appears to markedly increase 

students' enthusiasm for a topic, indirectly improving their performance in a course.

There is also evidence that active learning animation software can also benefit 

those who already understand a concept. The process of creating or watching a 

visualization of a subject may trigger new insights. For example, an animation of 

sorting algorithms inspired a worst-case analysis of Shell-sort [24] and visualiza­

tion software for teaching logic has caused researchers to reconsider the nature of 

reasoning [6].

Despite these benefits and the availability of many quality educational software 

packages, active learning animation software is not widely used. One can specu­

late about the reasons for this. One is that animation software for education was 

historically written for a single, specific computing environment, which precluded 

its use on other systems. Currently, with the popularity of the cross-platform Java 

programming language and the dominance of the Windows operating system, this 

is not as much of a problem as it was in the past.

A second possible reason for the lack of use of animation software is that it often 

requires complex installation and configuration. Since most animation packages 

usually only deal with one particular topic, an instructor wanting to use animation 

software in a course, must find, install, and integrate each animation system of 

interest into the course. Most instructors do not have the time to do this. Thus, 

helpful software often remains unused.

To alleviate these problems, an integrated, cross-platform learning environment 

that incorporates animation software is needed. One effort to develop such an 

environment is underway in the Webworks Laboratory of the Computer Science
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Department at Montana State University. The eventual objective of the Webworks 

Laboratory is the construction of a framework that supports the development of 

hypertextbooks for the World Wide Web. A hypertextbook combines hvper-linked 

text, images, audio, and video, with active learning Java applets (the animations) to 

provide a dynamic, web-based teaching and learning resource that greatly extends 

the capabilities of traditional textbooks. Since hypertextbooks axe based on cross­

platform web technology, they can be used on any platform that has a Java-enabled 

web browser. Hypertextbooks can be distributed either over the Internet through 

a web site or on some form of electronic media such as a CD-ROM. requiring little 

or no installation or configuration. Since the animation software is already inte­

grated into the text, no extra effort by the instructor is required to use animations 

in a course. Thus, hypertext books address most of the issues discussed above that 

have limited the adoption of active learning educational software in computer sci­

ence courses. The work presented in this dissertation represents an important step 

towards making hvpertextbooks a reality.

Conventional Computer Science Education

Conventional instructional methods have many drawbacks when used to teach 

the numerous dynamic processes found in computer science. For example, topics 

such as algorithms, data  structures, and models of computation require descriptions 

of constantly changing information. Presentation of these topics can be accom­

plished. in part, by an instructor at a whiteboard using diagrams and illustrations, 

but it is still difficult using such means to clearly convey these ideas to students.

Dedicated instructors often hone their lecturing skills in order to improve their
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presentation of complex, dynamic topics. A teaching style that actively engages 

students through dialog and that incorporates whiteboard diagrams of the subject is 

known to be effective [11], but it requires much effort and many years of experience 

to develop. Even then, the best lecturers do not get through to many students. 

Although students appear to comprehend the topic of a dynamic lecture as it is 

being presented, they must struggle to recapture this dynamic information later 

from their notes. As memories fade, the notes (which are a static representation of 

a dynamic event) often become a source of frustration and misunderstandings rather 

than a helpful study aid. Exacerbating the problems inherent in traditional teaching 

methods are large class sizes and heavy class loads that often prevent instructors 

from giving sufficient and timely feedback to their students on assignments and 

exams, further impeding the learning process.

Textbooks, being entirely static, have even more limitations in the presentation 

of dynamic concepts. Unlike teachers, books cannot be queried for additional in­

formation or alternative explanations. The clearest, most engaging texts often fail 

to successfully inform many students, even after repeated readings.

Clearly, conventional teaching methods are often not an efficient way to teach 

the inherently dynamic topics that are ubiquitous in computer science. Web-based, 

active learning resources offer powerful new ways of presenting information to aug­

ment traditional teaching and learning methods.

Unconventional Computer Science Education

Interactive animation software provides one possible solution to the limitations 

of traditional teaching and learning resources. Such software can present dynamic
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information in ways that are virtually impossible to do with traditional methods. 

Animation software also has the advantage of being "repeatable." Students are able 

to review lecture examples exactly as they were presented in the classroom. When 

using animation software, students are not required to rely solely on their memories 

and cryptic handwritten notes to review material taught in class.

Additionally, rather than being restricted to the limited set of examples provided 

by an instructor in a classroom, students using active learning animation software 

have the opportunity to explore a topic in greater detail and to further deepen 

their knowledge of a subject. Unfortunately, the learning opportunities provided 

by animation software are not usually a sufficient incentive to provoke most stu­

dents to investigate beyond what they need to know for an assignment or the next 

exam. True active learning software needs to entice students into becoming actively 

involved with the topic being animated. Carefully designed animation software 

will not only demonstrate a concept, it will also capture students' attention and 

guide them toward a proper understanding by providing feedback as they progress 

through a session using the software.

The research discussed in this dissertation is an initial step toward providing such 

an "unconventional’' active learning environment for the theory of computation. 

Much more research and development needs to be done to provide a complete set 

of resources for teaching this topic, but we are well on the way towards our goal.
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CHAPTER 2 

LITERATURE REVIEW 

Introduction

Animation software for computer science education can be divided into three 

general categories: program animators, algorithm animators, and concept animators 

[16]. Program animators allow the user to step line by line through the source code of 

a computer program as it executes. The user is provided with a view of variables and 

the program stack and can watch how each line of the program modifies the variable 

and stack values. Algorithm animators provide dynamic, graphical representations 

of the execution of an algorithm operating on a particular data structure of interest. 

Concept animators illustrate higher-level concepts in computer science, such as the 

execution of a theoretical model of computation. The dividing lines between these 

categories axe somewhat fuzzy, since some educational software packages fit within 

the definitions of more than one category, but the distinctions are useful for gaining 

a general overview of the field. Prominent examples of each type of animator will 

be discussed below.

Although much of the animation software discussed in this chapter is not directly 

related to teaching the theory of computation, it is still important to review it. The 

author's animation software for simulating finite state automata was influenced by 

many of the animation projects that preceded it. Also, in an integrated hypertext- 

book environment, the FSA Simulator will need to be integrated with other types of 

animation software to provide a comprehensive view of the theory of computation
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to its users.

Another important aspect of the study of animation software is evaluation. 

While many educators intuitively feel that active learning animation software helps 

their students learn. little empirical evaluation of animations has been done. Past 

efforts at empirical evaluation of animation software for computer science education 

will be discussed as well.

Evolution of Animators

All three types of animation software discussed in the previous section have 

passed through the same general evolutionary process. This process was fueled 

by improvements in computer hardware and by technology trends within the com­

puting community. Many of these software systems were initially created in the 

late 1980s for specific computing platforms with very simple graphical or textual 

interfaces. As the speed and graphics capabilities of personal computers and low- 

end workstations increased in the early 1990s. animation software began utilizing 

more sophisticated graphical interfaces. However, most of these programs remained 

targeted at specific platforms, such as the Apple Macintosh. IBM PC. or a spe­

cific brand of Unix workstation, thus restricting their use to a small subset of the 

educational community that used various of these platforms in their curricula.

The release of the first version of the Java programming language in 1996 

was a watershed event for the developers of educational animation software. The 

widespread adoption of Java by much of the computer industry made Java (and the 

Java virtual machine) an ideal platform for visualization software. The various ani­

mation software packages could be targeted to the Java virtual machine and then be
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run without recompilation on any computer with a Java virtual machine installed, 

no matter what operating system the computer was running. During this time, 

many of the visualization software packages for computer science education were 

ported to Java and many new projects were written from scratch in the language.

Program Animators

As stated previously, program animators allow the user to step through the 

source code of a computer program as it runs. They provide a view of the program 

stack and display the changing values of variables as the program executes. Al­

though program animators are similar to debuggers used for software development, 

program animators are specially designed for educational purposes. Some of the 

unique features of program animators include the ability to reverse execution at 

any point, automatic display of variable values, and special stepping modes that 

encourage students to predict the behavior of a program.

Dynalab

A prominent example of a program animator is Dynalab. which was developed 

at Montana State University under the direction of Rockford J. Ross. The Dynalab 

project started with the design of a virtual machine, known as the E-Machine [64], 

that allows reverse execution. An emulator for the E-Machine was developed shortly 

thereafter [9]. Once the E-Machine emulator was available, development of C. Ada. 

and Pascal compilers began [32. 33, 65]. As the compilers were created, the software 

for animating source-level programs in the corresponding high-level languages (i.e. 

the program animators) were developed concurrently. One program animator was
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♦FORW ARD

v Ba c k w a r d

ADVANCE EXECUTE TO END

PAUSE RESET PROGRAM

Figure 2.1: Java version of the Dynalab program animator

written for Unix [66] and another for Microsoft Windows [12]. Unfortunately, as 

is often the case with software developed by graduate students, the C and Ada 

compilers were never fully completed and have not been maintained.

The Pascal compiler was completed, however. Originally it covered only a subset 

of the Pascal language, but it has been continuously updated and maintained over 

the years and now supports nearly all of the Pascal standard [80].

After the advent of Java and web browsers, in order to escape the confinement 

of platform-dependence. the E-machine emulator and the program animator were 

ported from C to Java to take advantage of Java’s cross-platform capabilities. At
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this point the Pascal compiler has not been ported to Java, so Pascal programs can 

be animated but not compiled from the Java version of Dynalab. A Java compiler 

(written in Java) for the E-machine is currently under development [13].

The Dynalab user interface is divided into four parts (see Figure 2.1). The 

Source pane in the upper left corner displays the source code of the program be­

ing animated. In the upper right corner, the Variables pane contains the current 

program stack with the values of the variables in each stack frame. Below these 

two panels is the I/O  (Input/Output) pane which displays any data input by the 

user and any output from the program. Below the I/O  pane is a panel containing 

widgets for controlling the program's execution and a counter which shows how 

many E-Machine instructions have been executed so fax (for use in time complexity 

analysis of programs).

There are several possible modes of execution in Dynalab. The default mode is 

to run forward with pausing. In this mode, the animator stops executing at each 

block of code that will change the program stack or perform input or output. The 

piece of source code that is about to execute is highlighted in red to emphasize that 

the student should stop and think about what will happen next. When the student 

presses the EXECUTE button, the block of code is executed and the animator 

pauses again, this time with the code highlighted in green. When the student 

presses the ADVANCE button, the next piece of code that will be executed is 

highlighted in red. If pausing is disabled, the animator will skip the step with green 

highlighting and jump directly to the next block of code.

At any point during execution, the animator can be put in reverse. In BACK­

WARD  mode, the highlighting color changes to black and an UNEXECUTE button 

appears, allowing the student to reverse the execution of the program an arbitrary
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amount. This reverse execution is especially useful when students become confused 

about how a particular segment of a program works and need to see it execute 

again, perhaps many times. In a traditional debugger, the program would need to 

be restarted from the beginning.

The Unix and Microsoft Windows versions of Dynalab are complete development 

environments which allow' programs to be edited and compiled as well as executed. 

Since a Pascal compiler for the Java platform has not been developed yet. the Java 

version of the Dynalab animator can only execute precompiled programs. As noted 

earlier, a full version of the animator for animating Java programs, including a Java 

compiler for the El-Machine, is currently being developed.

FIELD

FIELD, the Friendly Integrated Environment for Learning and Development, is 

a programming environment designed for use in an educational setting [68]. Rather 

than being a stand-alone environment built from scratch. FIELD was built on and 

integrated with traditional Unix development tools such as make. Users can write 

programs in Pascal. Object-Oriented Pascal. C. and C ++. At the heart of FIELD 

is a message server which passes information between the various tools that are 

used. Another important component of FIELD is the cross-referencing database 

which stores information gleaned from the source code and the compiler. A text 

editor interface allows students to write, compile, and step through the execution 

of the source code of their programs.

Besides the ability to watch programs step from line to line as they execute, 

other visualization tools are provided with FIELD. A data structure view allows 

students to see and modify their program s data structures. A call graph view of
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the program displays the call structure of programs and highlights nodes when they 

are active during program execution. FIELD also has components that provide a 

view of memory allocation and file I/O .

ZStep 95

ZStep 95 [45] is a program animator for a subset of the Common Lisp pro­

gramming language. Like Dynalab. it allows students to write and step through the 

execution of a program in both forward and reverse modes. Its stepping capabilities 

are very flexible, allowing the user to easily select the granularity of the stepping. 

Stepping settings range from stopping at each individual expression to continuous 

execution of the program.

ZStep has some very innovative features for displaying expression and variable 

values in a running program. Rather than forcing users to "ping-pong" their atten­

tion between the source code display and a value display. ZStep provides a "value" 

window which aligns itself alongside each expression as it is executed. This window 

reveals the current value of the expression. Not only can the users see the current 

value, but they can also see a list of the values that the expression has taken on 

during the execution of the program. These historical values can also be filtered to 

show only those that meet specific conditions. Users can also browse values even 

more dynamically using the Show Value Under Mouse feature. When this feature 

is activated, the user can place the mouse pointer over any arbitrary expression in 

the program and the ‘"value" window will appear beside it to display the current 

value of that expression.
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Leonardo

Leonardo [79. 30] is a program animator with similar functionality to Dynalab. 

Using Leonardo, students can write and compile ANSI C programs using the stan­

dard C libraries. Like Dynalab. Leonardo allows students to step through the source 

code as the program is executing. Since programs are run on a special virtual ma­

chine. reverse execution is also allowed at any point.

Leonardo does not display the program stack or variable values when programs 

are executing, but it does have a graphics system that allows graphical views to 

be built on top of C programs. Special commands can be placed in the program's 

comments which direct the graphics system to take actions that illustrate what 

the program is doing. A preprocessor integrates these commands into the code of 

the program before compilation. Many animations for various algorithms and data 

structures have been developed for Leonardo using this system.

The current version of Leonardo only runs on recent Apple Macintosh computers, 

but a new version is being developed that will run on both Microsoft Windows and 

the Macintosh. In addition to becoming multi-platform, new features are also being 

added to Leonardo. The runtime environment is being redesigned to be more stable 

and support multi-threading. The graphics system is also being extended to allow 

interaction and to provide smooth transitions during animation.

Algorithm Animators

Algorithm animations are probably the most popular form of animation software 

used in computer science education. Data structures have been represented in 

textbooks and lectures as various kinds of diagrams for many years. In fact, it
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would be extremely difficult to explain most data structures and their associated 

algorithms (i.e.. abstract data types) without resorting to diagrams of some sort. In 

this particular case, a picture is indeed worth (at least) a thousand words. Algorithm 

animations take these kinds of diagrams a step further by providing a dynamic view 

of the operation of an algorithm.

Although they are closely related to program animations, algorithm animations 

provide a layer of abstraction from the details of an algorithm's implementation. 

Rather than showing a literal view of how a computer would execute the algo­

rithm. an algorithm animation usually provides just enough information to show 

the essence of the algorithm. It may also provide some extra "synthetic" information 

that would not be directly visible in a normal computer program [19].

A difficulty that occurs when static diagrams of algorithms are used in textbooks 

is that they must display changes to data structures as a series of snapshots. It is 

often difficult for students to perceive what changes occurred between snapshots 

and what actions caused the changes. Thus, it is logical to make use of computer 

graphics to make the progress of these changes explicit. Using animation software, 

changes in the structure of a diagram can be portrayed using smooth transitions 

from one state to the next. Students can see not only what changes resulted from the 

action, but also the exact nature of the changes themselves. Also, most algorithm 

animation software packages allow arbitrary’ data sets to be used. Students can see 

multiple examples of how the algorithm works. Instead of being restricted to the 

common cases of execution that can be fit into a textbook, students can view the 

algorithm performing in a virtually lim it le ss  variety of circumstances.

Since algorithm animations are relatively easy to produce, there are manv soft­

ware packages to choose from in this area. Rather than providing an exhaustive
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catalog of all algorithm animation software, only the most prominent or innovative 

examples will be discussed.

Sorting Out Sorting

The 1981 release of the 30-minute film. Sorting Out Sorting [4], is generally 

acknowledged to be the event that inspired much of the subsequent research into 

algorithm animation software. At that time, computer terminals capable of display­

ing color graphics were expensive and not usually available for classroom use. Thus, 

film and videotape were the only practical means for exposing students to algorithm 

animation software. Sorting Out Sorting provided a graphical representation of the 

actions of nine sorting algorithms along with voice narration explaining how each 

algorithm worked. At the end of the film, a "grand race" of all nine algorithms 

sorting the same data set was displayed. As the quicker algorithms completed sort­

ing the data well ahead of the others, students received a powerful demonstration 

of the relative efficiency of each algorithm.

Although Sorting Out Sorting provided a more accessible view of sorting algo­

rithms than a traditional lecture would have, it was still a passive and inflexible 

method of presenting the information. Instructors and students were not able to 

rerun the animations on different data sets or introduce animations of other sorting 

algorithms. Such activities require direct access to animation software.

Brown

Balsa Marc Brown's Balsa [19] framework for algorithm animation was one 

of the software packages that was inspired by Sorting Out Sorting. Balsa-II had
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a modular design that provided much functionality without restricting flexibility. 

Algorithms could be implemented in normal fashion in a high-level programming 

language and then annotated with special animation events at significant points in 

the source code. When a program was compiled for Balsa, a preprocessor converted 

these annotations into calls to special functions which broadcast messages to other 

parts of the system when significant events occurred. These event messages were de­

livered to views that provided a graphical representation of the algorithms current 

state. Views could be written by the animation developer or prebuilt views could 

be used. In addition to the views, developers needed to specify input generators 

which provided data to the program. Input generators allowed the data that the 

algorithm processed to be customized to a wide variety of situations.

Balsa's modular design provided much flexibility for users as well. If multiple 

views were provided for am algorithm, ail of the views could be displayed simultane­

ously or the user could choose to see only specific views. The user was also able to 

watch the same algorithm execute on multiple data sets simultaneously or multiple 

algorithms concurrently execute on the same data set. Using this framework, ani­

mations of many different algorithms were produced, including sorting, bin-packing, 

and graph traversal.

In addition to displaying interactive animations. Balsa was also able to record 

scripts of the actions in an animation session. This capability allowed animation 

sessions to be recorded for later playback or for broadcast to other computers run­

ning the Balsa-II software. This also allowed examples presented in a lecture to be 

saved for students to review or for an instructor to present as an animation to a 

group of students in a networked computer lab.
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Zeus The Zeus system [20] was a further refinement of Balsa. Although Zeus 

had the same basic architecture as Balsa, it was designed to be more powerful and 

flexible. While Balsa was implemented in Pascal. Zeus was written in Modula-2, 

which provided many new features such as object-orientation and threading. Using 

Zeus, several innovations in algorithm animation were explored, such as the use of 

color, sound [21] and three-dimensional graphics [22] to convey information about 

an algorithm.

Collaborative Active Textbooks Collaborative Active Textbooks (CAT) [23] 

transferred the concepts pioneered in Balsa and Zeus to the world wide web. CAT 

had the same basic design as its predecessors; an implementation of an algorithm 

was annotated with event procedure calls that sent event messages to views. CAT 

was implemented in an interpreted, object-oriented language called Obliq. CAT's 

animations (oblets) could be embedded into web pages and displayed using specially 

modified web browsers. Since Obliq was designed to support distributed comput­

ing. oblets running in different browsers on different machines were able to easily 

communicate with each other. This allowed CAT's oblets to be used by many stu­

dents simultaneously in classroom and lab situations. An instructor and students 

could view the same animation at the same time on different computers. Each user 

had control over some aspects of the animations display, but all of the views were 

synchronized and only the instructor had control of the animation’s execution.

The usefulness of CAT was limited by its implementation in Obliq. a little- 

known programming language that required a custom, in-house web browser. To 

work around this problem. JCAT, a port of CAT to the Java programming language, 

was created [26, 55]. The move to Java allowed JCAT applets to be run in all of
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the major web browsers available at that time. Later. JCAT was enhanced to allow 

the use of three-dimensional graphics in views [25].

Naps

Unlike the fully interactive approach taken by Brown. Naps' GAIGS (Graphical 

Algorithm Illustration through Graphical Software) was less interactive, but more 

flexible in some ways [56. 57. 62]. Algorithms to be animated by GAIGS could be 

implemented in any programming language. An algorithm s implementation would 

need to be modified to write out textual commands to a GAIGS "show file" as 

"interesting events" occurred during the algorithm’s execution. The "show file" 

could then be loaded and interpreted by the GAIGS software to produce a series 

of static snapshots of the algorithm as it executed. Although this scheme did not 

allow students to modify the execution of the algorithm dynamically, it did allow 

the animation to be "rewound" if the student wished to review the steps of the 

animation.

The first version of GAIGS supported nine basic data structures including stacks, 

queues, and lists. To make the creation of animations easier, a library of abstract 

data types that automatically output GAIGS commands was written for the Pascal. 

Modula-2, and Ch—I- programming languages.

Later versions of GAIGS increased user interaction by pausing execution of the 

algorithm after each snapshot was generated and displayed [63]. To provide a more 

complete learning environment, GAIGS was combined with web pages. Initially, the 

web-based implementation of GAIGS required that the GAIGS software be installed 

on the client machine [58], but. later, a Java applet (WebGAIGS) was created to 

display GAIGS "show files" that were generated on the server [59]. WebGAIGS
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was then enhanced to provide multiple snapshots in time-order sequence, to show 

multiple views of the same algorithm, and to display side-by-side comparisons of 

two different algorithms that solve the same problem [60].

Recently. GAIGS has been integrated into a client-server system. JHAVE (Java 

Hosted Algorithm Visualization Environment) [61]. JHAVE's server combines mul­

tiple animation systems that generate “show files’* and sends these files to be dis­

played in a Java applet client. Combining multiple animation systems allows stu­

dents to view both discrete snapshots using GAIGS and smooth-motion animations 

using Samba (discussed on page 22).

Stasko

Tango John Stasko's Tango [75] algorithm animation framework is based on 

the path-transition paradigm. An animation is made up of a number of graphical 

images, their locations, paths that they travel between locations, and transitions 

that they undergo (movement, color changes, etc.). Tango has a very different design 

from Balsa. Rather than being a self-contained system, Tango uses the functionality 

provided by the FIELD development environment mentioned in on page 13.

Construction of a Tango animation can be broken into three parts: "identify­

ing fundamental operations in the algorithm, building animations of those opera­

tions. and mapping the algorithm operations to their graphical representations” [76]. 

When executing, a Tango animation consists of two Unix processes. The Tango pro­

cess provides the graphics support needed to do the animation and another process 

provides an implementation of the algorithm to be animated. These two processes 

pass information back and forth to each other using FIELD’S interprocess com­

munication server. The algorithm can be implemented using direct calls to Tango
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procedures at points where interesting events occur or the implementation can be 

left untouched and the events can be included using FIELD'S source annotation edi­

tor. Algorithm implementations that include the Tango procedure calls directly can 

be rim stand-alone. If the Tango events are included using the annotation editor, 

the algorithm's implementation must be run in FIELD'S debugger.

Polka Tango's animation paradigm was sufficient for simple animations, but. 

when used for constructing animations involving many concurrent transitions, it 

became unwieldy. To address this weakness, the Polka system was created [76]. 

Polka is very similar in concept to Tango, but an explicit animation clock was 

added to allow many simultaneous actions to be scheduled independently. In addi­

tion. Polka was implemented as an object-oriented tool set as opposed to Tango's 

procedural structure. In this restructuring, explicit support for multiple views was 

built into Polka, allowing multiple windows to display different representations of 

an algorithm.

Taking the concepts of Polka a step further, an enhanced version of Polka. Polka- 

RC. was developed to allow animation authors to specify precise times (in seconds 

and milliseconds). Using "real clock" times provides much simplicity to animation 

construction. For example, rather than needing to provide specific offsets for a 

trajectory, designers need only describe a path and the pace at which an object 

should traverse it.

Samba Samba is a simple animation language that was added on top of the 

Polka framework [77]. Like GAIGS (see page 20), m y program in any program m ing  

language can be animated by emitting Samba commands on the program's standard
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output. Although Samba's command language does not provide access to all of the 

features of Polka, the subset of functionality that it exposes is sufficient for many 

sophisticated animations. It also makes creating an animation extremely simple. A 

student needs only to include print statements throughout a program to create an 

animation of it. rather them having to link in a library- during compilation.

Concept Animators for the Theory of Computation

Although this area has not been researched nearly as heavily as algorithm ani­

mation. animation software for teaching the theory of computation has a fairly long 

history. Much of the effort has been expended developing simulators for the var­

ious types of automata that are commonly discussed in an introductory theory of 

computation course. The next most common category is applications for displaying 

parse trees and animating various parsing techniques. These types of animations 

are often developed to support compiler courses. Finally, there are a few programs 

that push the envelope and attempt to assist students in learning more abstract 

concepts such as the pumping lemma for regular languages.

Automata

Automata are the topic in the theory of computation that seems to be the easiest 

to animate. Although automata are really intangible mathematical abstractions, 

it is common practice to describe them as if they were actual physical machines. 

Turing machines are often described in terms of physical parts: a movable read/write 

head, an unbounded tape, and so forth. It is only natural that software has been 

written to visualize automata using their usual physical descriptions.
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As with other types of educational animation software, there have been many 

different implementations of automaton animation software—far too many to be 

discussed exhaustively in this dissertation. Thus, only the most prominent examples 

in the literature will be discussed.

H\percard Automaton Simulation As with algorithm animators, the early au­

tomaton simulators had somewhat primitive user interfaces. One of the early sim­

ulators. the HyperCard Automaton Simulation (HAS) [36]. used a table-based rep­

resentation of automata rather than the graphically more complex state diagram 

views. This software was available only for Apple Macintosh computers as it was 

written using Apple's HyperCard software. HAS could simulate finite state au­

tomata. pushdown automata, and Turing machines.

Turing's World Barwise and Etchemendv's Tunng's World [5] is probably the 

most sophisticated automaton simulator that has been developed to date. Like 

HAS. Turing's World is an application that runs on Apple Macintosh computers, 

but Turing's World's has a far more elaborate representation of automata as state 

diagrams. The primary' purpose of Turing's World is to simulate Turing machines. 

It is also possible to build finite state automata as restricted versions of a Turing 

machine. Pushdown automata are not supported directly.

Some of Turing World’s unique features include the ability to create subma­

chines. schematic machines, wild card transitions, process tree views of nondeter- 

minism. and annotations. Submachines are small Turing machines for performing 

a specific task. They function much like functions or procedures in imperative 

programming languages. Using submachines, students can use Turing’s World to
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create very complex machines without having to construct one laxge. unwieldy state 

diagram. Schematic machines are the complement to submachines. Schematic ma­

chines are essentially template Turing machines that contain "holes" into which 

submachines can be placed for a specific application. Wild card transitions provide 

a powerful way to create Turing machines that use a large alphabet. Rather than 

being forced to specify a transition for each symbol in a large range, a wildcard 

transition uses an ellipsis in place of one of the alphabet's symbols to indicate that 

that transition should be taken if the current input symbol is not specified in other 

transitions from that state. Process trees display the execution of a nondeterminis- 

tic automaton by displaying a tree of the states that are entered as the automaton 

executes. Automata built in Turing's World can also include annotations, which 

are textual notes that explain the function of an automaton.

TUMS TUMS (TUring Machine Simulator) [53] was written to bring the func­

tionality of Turing's World to the Sun Microsystem’s OpenWindows environment 

on the SPARC architecture. In addition to providing most of the features found in 

Turing's World, TUMS could also be used to simulate pushdown automata.

NPDA, FLAP and JFLAP Development of automaton simulation software led 

by Susan Rodger began with NPDA [29], a system for simulating nondeterministic 

pushdown automata (NPDAs). It was written using Unix's X I1 windowing environ­

ment and the Athena widget toolkit. Users can load and modify prebuilt NPDAs 

from a file or create one from scratch. The NPDA can then be run on an input 

string. It can handle up to sixteen different nondeterministic configurations. The 

individual configurations are displayed belowf the state diagram of the NPDA. At
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every step, each configuration's state, stack, and input tape are updated. If a con­

figuration is at a nondeterministic step, new configurations are created. Individual 

configurations can be killed or paused for convenience.

One weakness of NPDA’s interface that was inherited by its successors is the 

inability to display multiple arrows for transitions that have the same endpoints. 

For example, if an automaton contains a transition that moves from state 1 to state 

2 and another transition from state 2 to state 1. both transitions will be represented 

with a single arrow that has two labels. Each label contains an arrow head that 

indicates which direction the transition for that label travels. Although this method 

allows multiple transitions between the same endpoint states, it can be very difficult 

to understand at first.

NPDA later became FLAP (Formal Languages and Automata Package) [46. 47. 

71]. Like NPDA. FLAP was developed for the X ll windowing environment. In 

addition to nondeterministic pushdown automata, FLAP also simulates finite state 

automata and Turing machines with one or two tapes.

As mentioned on page 9. after the release of the Java programming language, 

many educational animation projects were ported to this language. FLAP followed 

this course, becoming JFLAP (Java Formal Languages and Automata Package) 

[67, 8. 34, 38] (see Figure 2.2). JFLAP can be rim as either a stand-alone application 

or as an applet in a web browser. JFLAP has all of the features of FLAP. In addit ion, 

many of the algorithms for processing automata have been animated. Students 

can watch a nondeterministic FSA be transformed into a deterministic FSA and a 

deterministic FSA transformed to contain a minimal number of states. FSAs can 

be converted to regular expressions and regular grammars. Regular expressions and 

regular grammars can also be convert to FSAs. The same is also true for PDAs and
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Figure 2.2: A Nondeterministic FSA in JFLAP 

context-free grammars

JCT The Java Computability Toolkit (JCT) [70] is animation software s im ilar  

to JFLAP. JCT initially supported only the simulation of finite state automata and
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Turing machines, but it was later extended to also simulate pushdown automata.

JCT was built using the "Swing" user interface toolkit that was introduced into 

version 1.2 and later of the Java Runtime Environment. Unlike Java's original 

Abstract Windowing Toolkit (AWT). Swing draws its own widgets, which allows 

Java applets and applications to have a consistent look-and-feel across different 

computing platforms. JCT can be used as either an applet in a web browser or as 

a stand-alone application, although when using it as an applet, security restrictions 

in the Java virtual machine prevent it from loading or saving files as well as some 

other activities. The interface of JCT is quite complex with multiple windows and 

many different toolbars for constructing and simulating automata. The architecture 

includes a pluggable interface that allows new functionality, such as the pushdown 

automaton environment, to be added easily.

The finite state automaton environment allows finite state automata to be con­

structed as state diagrams and simulated on arbitrary input strings. In addition to 

standard simulation, the closure operations such as minimization, concatenation, 

intersection, and others can be performed on finite state automata. A unique fea­

ture of JC T ’s finite automaton environment is its "circuit board diagram", which 

represents an FSA as a grid with the states on the diagonal.

The Turing machine environment of JCT is perhaps even more sophisticated 

than that of Turing's World. Like Turing’s World. JCT allows Turing machines 

to use other Turing machines (submachines) as subroutines. Any Turing machine 

created in JCT can be used as a submachine. Five submachines for common move­

ments of the read/write head are included on one of JCT’s default toolbars. Tape 

information that is passed between submachines can be either locally or globally 

scoped, allowing complex Turing machines to be simplified. JCT also provides
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Figure 2.3: JeLLRap’s Parse Tree View

"variable transitions7’ that are used to represent bulky groups of transitions and 

local or global scoping of tape squares passed between sub machines.

A drawback of JCT's sophistication is its complexity. When the software starts, 

the user is suddenly faced with a large array of buttons and toolbars, many of which 

do not have an obvious function. It would take quite a bit of time for a novice to 

become productive in the JCT environment.

Context-Free Grammars
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Susan Rodger LLparse and LRparse [10. 8] are software packages for animat­

ing the parsing of LL(1) and LR(1) context-free grammars. When running one of 

these packages, the user is first asked to enter a context-free grammar. Once the 

grammar has been created, the user must determine the first and follow sets for 

each nonterminal in the grammar and then create a parse table. When a parse 

table has been successfully built, the user reaches the actual parsing animation. 

The user can enter a  string to parse and then observe each step of the parse includ­

ing which portion of the string has been parsed at each step and what the current 

state of the parse stack is. The original LLparse and LRparse were developed for 

the X I1 windowing environment on Unix. The two programs were later ported to 

Java and combined into a single package named jeLLRap [34]. In addition to LL(1) 

and LR(1) grammars. jeLLRap now also supports LR(2) grammars. At the parsing 

animation stage, in addition to the string and the stank, the user can also view the 

construction of a parse tree or a step by step string derivation (see Figures 2.3 and 

2.4).

Pate [8. 38] is a software package that is similar to jeLLRap. but wrorks with 

arbitrary context-free grammars rather than being restricted to an LL or LR subset.

Webworks Laboratory Projects Members of the Webw’orks Laboratory at Mon­

tana State University have been working on two projects for animating concepts 

related to context-free grammars. The first project, the Parse Tree Applet, is an 

animation that allow's the user to interactively use a grammar to generate a parse 

tree. The other grammar-related project is an applet that animates the generation 

of first and follow sets for LL(1) grammars.

The Parse Tree Applet, originally developed by Jessica Lambert [14] and later
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Figure 2.4: JeLLRap's String Derivation View

enhanced by Teresa Lutey [35] allows students to load a context-free grammar and 

build a parse tree using the rules of the grammar. The user interface of the Parse 

Tree Applet (see Figure 2.5) contains two main elements. In the upper right corner of 

the applet, a window containing the rules of the context-free grammar is displayed. 

In the lower half of the applet is a window that displays a parse tree view of the rales 

that have been applied so far. Users can select from a set of predefined grammars, 

create a new grammar, or edit an existing grammar.

Before creation of the parse tree begins, the user can select a nonterminal sym­

bol with which to start the tree and the expansion mode for the tree: leftmost, 

rightmost, or any node. The starting nonterminal will be placed as the root node 

of the parse tree. The user can then select the root node by clicking the mouse
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on it and then select a gram m ar rule from the grammar window to apply to that 

nonterminal. After a node and a grammar rule have been selected, clicking the but­

ton labeled Expand will add the symbols from the right-hand side of the selected 

rule as the selected node's children. The tree will be redrawn in smooth fashion to 

accommodate the new nodes below their parent.

Unexpanded nonterminal nodes are displayed in green. Nonterminal nodes that 

have been selected for expansion are displayed in red. Terminal nodes are. of course, 

leaf nodes, and are displayed in blue at the lowest level of the tree, so that the string 

that is being generated cam always be read easily from left to right. At any point 

during expansion, the user can undo expansions and collapse entire subtrees back 

to an unexpanded state.

Pumping Lemmas

It is very difficult to produce active learning software for some topics in the 

theory of computation. Topics like automata and grammars have had graphical 

representations for many years. Adapting such graphical representations to active 

learning animation software has been a relatively simple task. In contrast, very few 

attempts have been made to produce active learning software for topics such as the 

pumping lemmas for regular and context-free languages. In fact, the PumpLemma 

software [8] developed by students under the direction of Susan Rodger is the only 

example in the literature of active learning software being created for such a difficult 

topic.

PumpLemma assists students in proving that specific languages are not regular. 

The user interface consists of a series of text boxes which the user must fill out in 

the correct order (see Figure 2.6). First the student must specify the language to
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Figure 2.5: The Parse Tree Applet

be investigated. PumpLemma restricts the languages to relatively simple strings 

such as anbn and a%bn. Once a language has been specified, the student can define 

the range of the variables used in the language description. For example, the n 

used in Figure 2.6 was set to be > -1 . After that, the student needs to enter a 

string from the language that does not pump as specified in the pum ping lemma. 

The pumping length of the language, m. is available to be used when entering the 

string. Once the string has been entered. PumpLemma will determine how many 

cases the student must consider to prove that the language is not regular. The cases 

are displayed in the list box on the upper right side of the interface. For each one 

of these cases, the student needs to divide the string into parts x, y. and 2  and then
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Figure 2.6: PumpLemma in action

indicate how many times the y substring is to be repeated in the i text box. When 

those four text boxes have been filled in, the student can press the button labelled 

“Run” to check if the resulting string is not in the language. If so, the string will 

be displayed and the student can move on to the next case. When all cases have 

been shown to not pump for some i, PumpLemma will display a message indicating 

that the language has been proven to not be regular.
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PumpLemma is an intriguing piece of educational software. Unfortunately, the 

publicly available PumpLemma package is a beta version th a t was released in 1997. 

The software is very' buggy and the interface is awkward and confusing. Although 

there were plans to complete its development, all work on PumpLemma appears to 

have stopped.

Evaluation of Educational Animation Programs

Importance

Formal evaluation of the effects of interactive animation software on learning 

is extremely important. Although many intuitively feel that visualization software 

will improve students' comprehension of complex topics, initial expectations of how 

students will use a particular resource and what effect it will have on their learning 

often prove to be highly inaccurate. Students often tend to look for the most efficient 

way to complete an assignment without any consideration of how’ that method 

affects w’hat they learn (or w’hether they learn at all). Even if a visualization is 

useful for learning, its use and environment may need to be 'tuned" to get the 

most benefit for students.

Difficulties

Despite its importance, very little empirical evaluation of interactive animation 

softwrare has been done. Educational evaluation is a complex process that is fraught 

with difficulties. To be done properly, it requires a large, carefully selected pool of 

subjects who are representative of the target population, meticulously designed
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materials for teaching and testing, and the ability to isolate groups of students from 

each other during the evaluation. Most educators in computer science do not have 

a background in educational research and rarely have the time or resources needed 

to learn about and deal with the complexities of formal evaluation methods [1. 73].

Past Efforts

Nearly all of the researchers who have developed animation software for com­

puter science education have made some attempt at evaluating its effect on students. 

Much of this evaluation focuses on anecdotal evidence and quantification of the stu­

dents' subjective response to using the animation software (for example [46]). Very 

little effort has been expended to generate empirical data on the effects of anima­

tion software on learning. The two most notable efforts at evaluating the effects of 

educational animation software on learning have been done by Richard Mayer and 

John Stasko.

Richard Mayer Richard Mayer's research has focussed mostly on the use of 

illustrations and passive animations for explaining mechanical topics such as the 

operation of hydraulic brakes and bicycle tire pumps. Mayer's first study [48] ex­

amined how illustrations in scientific texts influenced readers' understanding and 

retention of the material. He found that labeled illustrations in a text increased 

"explanative recall’' and "problem-solving transfer” , but did not increase retention 

of non-explanative material or verbatim recall. In other words, the illustrations 

increased the readers’ ability to explain how a mechanical system worked and to 

apply that knowledge to new situations, but did not increase their understanding 

of material that was not directly related to the general idea of the mechanical pro­
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cess. A second study with Joan Gallini [51] found very similar results when using 

a series of illustrations that depict labelled parts of a mechanical system and the 

steps that these parts go through when the system is functioning ( "parts-and-steps” 

illustrations).

Mayer later turned from static illustrations to multimedia animations. In two 

studies with Richard Anderson, he examined how' non-interactive computer ani­

mations of mechanical systems when coupled with verbal explanations of the sys­

tem affected understanding. In the first study [49]. they found that students who 

viewed an animation with a simultaneous verbal explanation performed better on 

a problem-solving test than students who received a verbal explanation separately 

from the animation. A similar, but larger, second study [50] found similar results. 

The group that viewed an animation concurrently with a verbal narration outper­

formed all other groups on a problem-solving test.

Mayer's results, while not directly related to interactive animation software for 

computer science education, provide evidence that animation software can be bene­

ficial to learning and provide a foundation for evaluating other forms of educational 

animation software.

John Stasko In addition to the development of algorithm animation software 

at Georgia Tech’s Graphics, Visualization, and Usability Center. John Stasko and 

his associates have also pioneered the empirical evaluation of visualization software 

for computer science education.

In an initial exploratory study [3], the group found that students were receptive 

to animations and wanted to see them used in the classroom. They also concluded 

that factors that should be considered in empirical studies should include the stu­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

dents' academic and technical background, spatiad abilities, and prior experience 

with visual technologies.

The first empirical evaluation [43] used an animation of Kruskal’s minimum 

spanning tree algorithm in a classroom and lab setting. All groups in the study 

attended a lecture about the algorithm. Some of the groups attended a lecture that 

used slides to illustrated Kruskal’s algorithm while other groups viewed a lecture 

that used the animation. These groups were further divided into those who par­

ticipated in a lab and those who did not. The lab groups were also subdivided 

into those who constructed their own graphs on which to run the algorithm (active 

lab) and the those who viewed animations based on prepared data files. Two tests 

were administered after the treatment, a multiple-choice/true-false test and a free 

response test. The lab groups performed better than the lecture-only groups on 

both tests. The active lab group performed better than the passive lab group on 

the free response test, but there was no significant difference between the lab groups 

on the multiple-choice/true-false test.

A second empirical evaluation [27] examined the effect of animations on both 

non-computer science and computer science students. Participants watched a video­

taped lecture and read a text about an algorithm. Some of the students watched 

an animation and others did not. Half of the animation and non-animation groups 

were asked to predict the next step of the algorithm in a situation while the other 

half only viewed the material without making any predictions. All students took 

the same post-test after the treatment. There were no significant differences on the 

results of the post test for any of the groups.

After the discouraging results of the second evaluation, Stasko’s group reevalu­

ated their approach. Stasko [77] tried a different use of animations. Rather than
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presenting students with a prebuilt algorithm animation, he required the students 

to build their own animations for two algorithms with the Samba animation tool. In 

later exams, students answered questions about the two algorithms nearly perfectly.

Meanwhile observational studies were also performed to better determine how 

students use animations. Kehoe and Stasko [40] observed three graduate students 

complete a "homework" assignment about binomial heaps using a text with pseu­

docode. an animation, and static diagrams. They found that students used the 

animations in successful learning strategies, mostly using the animations to learn 

the steps of the algorithm. They also observed that the students needed better ways 

to make connections between the different representations of the algorithm. The 

students claimed that the animations helped them learn more quickly. A second 

observational study [41] was performed with twelve students. Half of the students 

used animations while the other half used only a text to complete a “homework" as­

signment on binomial heaps. After the students completed the assignment, they all 

took a post-test. The students who used the animation did significantly better on 

the post-test than those who did not. The authors observed that animations were 

more useful in open, interactive situations rather than in closed exam situations. 

They also noted that animations appear to make algorithms more accessible and 

less intimidating. Animations also appeared to increase student motivation. The 

researchers also concluded that animations were best used for learning procedural 

operations.
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Conclusions

Although much work has been done to develop interactive learning software for 

computer science education over the past 20 years, this field of research is still in 

its infancy. There is very little evidence of collaboration among the researchers in 

the field. Much work is duplicated by researchers at different institutions. One of 

the major investments that a research project must make is to develop the software 

infrastructure on which their later work will be based. In the current situation, 

each project must invest a significant amount of time setting up infrastructure. 

Should the primary investigator lose funding, retire, or just lose interest in a project, 

the software usually languishes and eventually disappears, bringing little benefit to 

researchers who follow, other than some journal publications.

The products of many animation projects often do not see use outside of the 

institution where they were developed. While it is often useful to have multiple 

"competing" research efforts, given the relatively small number of resources allo­

cated to computer science education research, it may be better for the field as a 

whole if researchers were to pool their efforts more. For example, establishing a 

publicly available archive of source code from various projects would ensure that 

progress made in one area would be available to researchers and programmers to 

build upon when embarking on new projects.

Other obstacles to the use of interactive learning software axe beginning to be 

eliminated. Now that most projects use the Java programming language, platform- 

dependence has become less of an issue. The time-consuming complexity of inte­

grating these tools into a course is still a major hurdle that needs to be overcome 

for animation software to see widespread use in computer science education. To
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alleviate this problem, more work needs to be done to improve the ease of use of 

this software for both the instructors and students. There are many ways to do 

this including integrating the software into a single course resource such as a "hy­

pertext book” or modifying the software to be easy to install and adapt to a wide 

variety of educational situations.

Although evaluation of the effects of active learning animation software on stu­

dents' learning is recognized as important, much research still needs to be done. 

Research into the evaluation of animators would also benefit from collaboration be­

tween institutions. Such collaboration would allow resources to be pooled and more 

effective evaluation methods to be developed.
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CHAPTER 3 

THE FSA SIMULATOR 

Introduction

The FSA Simulator is the main product of the research performed for this dis­

sertation. It is similar in function to other automaton simulators, notably JFLAP 

and JCT. but its focus is exclusively finite state autom ata (FSAs). The FSA Sim­

ulator also has a number of unique features that set it apart. The most notable is 

its capacity for FSA construction exercises that allow a student to check answers 

and receive feedback. Feedback is given in such a way that the student is guided 

toward the correct answer without the answer being revealed.

The FSA Simulator is written in the Java programming language and can be 

executed as a stand-alone application or embedded as an applet in a web page and 

displayed in a web browser. When run as a stand-alone application, the Simulator 

can read and write files on the local file system. When used as an applet, the 

security restrictions imposed by the browser prevent the Simulator from reading or 

writing files on the local file system. Other than this difference, the operation of 

both versions is the same.

User Interface Overview

The user interface of the FSA Simulator is fairly simple (see Figure 3.1). Most 

of its display is taken up by the state diagram panel in the lower left corner. An 

FSA is displayed in this panel as a state diagram, similar to diagrams found in
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Toolbar

Input Tape

State Diagram Panel Execution Control Panel

Figure 3.1: User Interface of the FSA Simulator

textbooks. The state diagram panel also serves as the main interface for creating 

and modifying FSAs.

Above the state diagram display is a panel that represents the FSA's input tape. 

In this panel, a user can enter and edit a string for the currently loaded FSA to 

process. A triangular tape marker, positioned below the tape squares, is used to 

indicate which symbol of the input string is currently being processed by the FSA.

Above the input tape panel, a toolbar with a set of buttons is displayed. In 

both application and applet versions of the Simulator, buttons for executing the
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FSA on the contents of the input tape, for clearing the state diagram panel, and for 

modifying the FSA’s alphabet—labelled Run. Clear, and Alphabet, respectively— 

are available. If the Simulator is being run as a stand-alone application, additional 

buttons for loading prebuilt FSAs from a file and for saving the currently displayed 

FSA to a file—labelled Load. Save, and Save .4s—are also displayed. (Figure 3.1 is 

a snapshot of the stand-alone application version of the FSA Simulator.)

To the right of the state diagram panel is the execution control panel. If the 

currently displayed FSA is not processing a string, all of the items on this panel are 

disabled. However, in Run mode, the Step and Cancel buttons for controlling the 

execution of the FSA are enabled as well as a set of three “lights” that indicate the 

current execution state of the FSA while processing.

Basic Operation

The most basic form of active learning exercise that can be done with the FSA 

Simulator is to have it load a prebuilt FSA. say M . from a file and allow students to 

test input strings for membership in the language of M. The user can enter symbols 

for the input string in the tape panel by clicking on the tape panel with the left 

mouse button and then typing characters from the FSA’s alphabet on the keyboard. 

The tape marker serves as a cursor when the tape is being edited, positioning itself 

under the tape square that is currently available for editing. The marker can be 

moved about the tape squares using standard editing keys, including the left arrow, 

right arrow, and backspace keys.

When the user is ready for the FSA to process the string displayed on the tape, 

the Run  button located above the tape panel can be clicked. Doing this shifts the 

Simulator into Run mode. When entering Run mode, the tape marker moves to
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Figure 3.2: The FSA Simulator After Entering “Run” Mode

the first square on the tape, the Step and Cancel buttons in the execution control 

panel are enabled, and a solid red circle appears inside the start state (the state 

marked with the > symbol) in the state diagram panel (as showm in Figure 3.2). A 

solid red circle inside a state indicates the current state of the FSA.

In the execution control panel arc three images that simulate light emitting 

diodes (LEDs) and two buttons. The LEDs axe labelled Accepted, Rejected, and 

Processing. Upon entering Run mode, the yellow Processing LED lights up to 

indicate that the FSA is in the midst of processing a string. From this point on. 

while processing an input string, the Simulator repeatedly performs the following 

two actions:

1. It awaits a left mouse click on the Step button.

2. When it recognizes that the Step button has been clicked, the Simulator causes
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the FSA to process the input symbol above the tape marker. Based on the 

current state and the current input symbol, it determines what the next state 

should be. The Simulator then moves the solid red circle smoothly along the 

transition arrow' labeled with the current input symbol to that next state. At 

the same time, it advances the tape marker to the next square on the tape 

(see Figure 3.3).

When the tape marker reaches the end of the input string, the Simulator pauses 

one more time and w'aits for the user to click Step. This time wrhen Step is clicked, 

the Processing LED will turn off. and. if the FSA is in an accept state (a state 

drawTi with a double circle), the green Accepted LED will turn on: otherwise, the 

red Rejected LED will turn on (see Figure 3.4). If the FSA accepts the string, the 

state indicator circle, which must now be in an accept state, also changes color from

Figure 3.3: The FSA Simulator During Execution
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Figure 3.4: The FSA Simulator Accepting a String

red to green. Clicking the Step button once more causes the simulation to stop (Run 

mode is terminated).

FSA Construction and Modification

Beyond simply allowing the user to test strings with an FSA, the FSA Simulator 

also allows FSAs to be constructed and modified. This allows users to be more 

actively involved while learning about FSAs.

The state diagram panel serves as the main interface for creating and manip­

ulating the structure of a finite state automaton. A user's interaction with the 

state diagram panel was designed to be as simple as possible. Rather than having 

multiple editing modes for creating and modifying states and transitions, all modi­

fications of an FSA can be done through simple mouse actions. States are created
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Figure 3.5: Moving a Transition in the FSA Simulator

by placing the mouse pointer over an unoccupied portion of the panel and clicking 

the left mouse button while holding down the Ctrl key on the keyboard. Similarly, 

a user creates transition arrows from one state to another by holding down the 

Ctrl key and pressing down on the left mouse button while the pointer is inside the 

first state of the transition: the user then moves the mouse pointer (i.e.. drags the 

arrow) to the destination state and releases the left mouse button. As the pointer 

is dragged out of the first state, a transition arrow representing the new transition 

follows the mouse pointer until a destination state is reached, at which point the 

arrow tip of the transition attaches itself to that state (whereupon the left mouse 

button can be released). The position of a state can be changed by clicking the left 

mouse button inside of that state, and dragging the state by moving the mouse to 

the new position for the  state, where the mouse button is released.

Endpoints of transition arrows can also be moved from state to state. Clicking on 

a transition arrow will cause square “handles^ to appear on the arrows endpoints. 

These handles can be dragged from one state to another, causing the transition to 

change one of its endpoints (see Figure 3.5). During the creation or movement of a 

transition arrow, the arrow will not attach to states which already have a transition 

connecting them to th e  state at the other end of the arrow. Multiple transitions
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Figure 3.6: The State Popup Menu

from one state to another are denoted in the usual fashion by labelling the transition 

arrow with multiple symbols.

The properties of states and transitions can be changed using the popup menus 

that appear when the right mouse button is clicked over a state or transition. The 

state popup menu (see Figure 3.6) allows a state to be designated as the start state 

or one of the final states. There are also items for editing the label of a state and 

the state's tooltip description (see Figure 3.7) under the Properties menu item. (A 

tooltip description is a short piece of text that appears near the mouse pointer 

after it remains motionless above a state for certain amount of time.) States (and 

their associated transition arrows) can be deleted from the diagram by selecting the 

Remove menu item.

On the transition popup menu (see Figure 3.8), two items are available. Clicking 

the Edit Symbols item will cause a dialog box to appear th a t will allow the user 

to select symbols from the alphabet to be included in the label of the transition 

arrow. Just as in the state popup menu, clicking the Remove item, will delete the
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Figure 3.7: A State Tooltip Description
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Figure 3.8: The Transition Popup Menu

transition arrow from the state diagram.

Among the buttons in the toolbar above the input tape panel are some that 

can be used when constructing or modifying an FSA. Pressing the Clear button 

will erase the current FSA from the state diagram panel. Clicking on the Alphabet 

button will cause a dialog box to pop up that allows the user to choose which 

symbols to include in the alphabet of the FSA (see Figure 3.9). The alphabet 

dialog currently allows only symbols typically found on US English keyboards to be 

selected, but this restriction could easily be eliminated.
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Figure 3.9: The FSA Simulator’s Alphabet Selection Dialog 

FSA Construction and Verification Exercises

The FSA Simulator goes beyond just allowing new FSAs to be constructed and 

executed. Using features unique to the Simulator, FSA construction and verification 

exercises can be written in which students are required to construct an FSA to 

recognize a given language. The FSA Simulator will then guide the user toward a 

correct solution. This capability is one chief feature that sets the FSA Simulator 

apart from similar systems.

The creation of a construction and verification exercise is relatively simple. The 

author of the exercise, running the FSA Simulator as an application, first creates 

a correct FSA that recognizes the language described in the exercise and saves the 

FSA to a file. The author may also want to create a “starter” file that contains a 

partial FSA with which the students can begin constructing their solutions. These
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FSA files must then be added into the "jar'’ archive in which the binary distribution 

of the Simulator is packaged. The exercise author must then create an HTML file 

containing a description of the language which the student needs to design an FSA 

to recognize. The author must also include the HTML tags needed to embed the 

FSA Simulator into the page as an applet. Between the HTML tags for the applet, 

the author needs to include the name of the FSA file containing the correct solution 

and (if desired) the name of a "starter" file to be displayed when the applet is 

started. Once these steps have been completed, the HTML file and the Simulator's 

“jar” file need only be placed in a directory that is accessible to a web server and 

the exercise will be ready for use.

To complete an exercise, a student just needs to enter the Universal Resource 

Locator (URL) of the exercise's HTML file into a Java-enabled web browser. The 

text of the exercise and the FSA Simulator applet will appear when the HTML file 

is loaded into the browser.

When the FSA Simulator applet is used in a construction exercise, its user 

interface remains the same as presented in previous sections describing the FSA 

Simulator with the exception that a Compare button is added to the toolbar. When 

the applet begins executing, it will load the correct FSA created and stored by the 

exercise author in the background. The "starter" file, if present, will be loaded and 

displayed in the state diagram panel.

At this point, the student attempts to construct an FSA that recognizes the 

language specified in the exercise using the FSA construction and modification 

tools described earlier. When the student thinks th a t a correct FSA has been built, 

the Compare button can be clicked for verification. Whenever the Compare button 

is clicked, the Simulator compares the language of the FSA that the student has
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constructed in the state diagram panel to the language of the correct FSA that was 

loaded in the background. If the languages are different, a dialog box will pop up 

to alert the student that either the displayed FSA accepts a string that is not in 

the target language (see Figure 3.10) or that it does not accept a string that is in 

the target language (see Figure 3.11). A specific ”problem" string is simultaneously 

displayed to give the student an idea of where the constructed FSA falls short. 

Thus the student is guided toward a correct solution without being given the answer 

outright. When the student's FSA is correct, clicking the Compare button pops up 

a dialog box which informs the student that the constructed FSA is correct (see 

Figure 3.12).

With the FSA comparison feature providing feedback, a high degree of active 

learning is involved, as student.-* continue to work toward a correct solution with the 

guidance of the Compare feedback mechanism. It has been observed in laboratory 

exercises that without the feedback provided by the Compare feature, students often 

construct incomplete solutions. Since they do not have any way (short of a formal 

proof) to determine whether their solutions are correct or not. they often build 

something that seems to work and move on to the next exercise. Allowing students 

to see where their answers fall short gives them the motivation necessary to design 

a complete solution.

Nondeterminism

The FSA Simulator seamlessly supports the construction and execution of non- 

deterministic FSAs. Nondeterminism can be added by creating multiple outgoing 

transition arrows from the same state, labeled with the same symbol. Empty-string 

transitions can also be created by selecting the symbol e from the alphabet for the
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If the optional exponent is present in either case, the exponent is formed by including the letter e 
or E, followed by an optional + or fallowed by one or more digits.

Examples cf float literals include 1.2,1.2E+5, le6, and 1.34E-2.

Design a finite state automaton that recognizes float literals. When you have finished, draw the 
state diagram an yrxir exercise worksheet. To check your work; press the Compare biftan.

Figure 3.10: FSA comparison message when the student’s FSA accepts a string not 
in the target language
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If the optional exponent is present in either case, the expuuent is formed by including the letter e 
cc £, fallowed by an optional + cc followed by one cr more digits.

Examples of float literals include 1.2, 1.2Eri-5, leb, and 1.34E-2

Design a finite state automaton that recognizes float literals. When you have finished, draw the 
state diagram an your exercise worksheet. To check your work; press the Compare button.

Figure 3.11: FSA comparison message when the student’s FSA does not accept 
some string in the target language
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If the optional exponent is present is  either case, the exponent is formed by including the letter e 
or E, followed by an optional + or followed by one or more digits.

Examples of float literals include 1.2,1.2E+5, le6, and 1.34E-2.

Design a finite state automaton that recognizes float literals. When you have finished, draw the 
state diagram an your exercise worli

0-9 0-9

0-90-9

0-9

0-9

0-9

Figure 3.12: FSA comparison message when the student’s FSA correctly recognizes 
the target language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

□□□I

Figure 3.13: FSA Simulator after a nondeterministic transition

label of a transition arrow. When a nondeterministic FSA is processing a string, 

if multiple transitions exiting the current state are labeled with the current input 

symbol, the red circle will split into multiple copies, each of which will travel simul­

taneously over one of the transition arrow’s labeled with the current input symbol to 

the respective next states (see Figure 3.13). If the FSA enters a state with an out­

going empty-string transition, new red circles will split off of the red circle in that 

state and travel to all other states that are reachable using empty-string transitions.

Applications

Nearly every computer science or computer engineering curriculum requires that 

students learn some elements of the theory of computation. Regular languages and
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finite state automata are key concepts that these students must learn. The FSA 

Simulator can be used in many different ways to support the teaching and learning 

of these concepts. In this section, some of the ways that the Simulator can be—and 

has been—used will be discussed. For a discussion of possible future applications 

of the FSA Simulator see Chapter 6.

Classroom Demonstrations

An important use of the FSA Simulator is to aid instructors during lectures 

about FSAs. While it is possible to illustrate a lecture about FSAs using diagrams 

drawn on a whiteboard or overhead transparencies, the FSA Simulator can be used 

to make this task much easier and more interesting for the students. When demon­

strating how a string is processed by an FSA on a whiteboard, the instructor must 

keep track of the details by constantly marking and erasing marks from a hand- 

drawn diagram. The FSA Simulator automatically displays the current state of the 

FSA and illustrates state transitions with a smooth animation.

Not only does use of the Simulator make lectures run better, it may also improve 

students' comprehension. Mayer and Anderson [49] found that animation of a 

concept combined with simultaneous narration improved student learning over other 

methods of teaching.

Supplementing Textbooks

The FSA Simulator can also be used as a supplement to an existing textbook. 

FSA construction exercises from the textbook can easily be adapted for the web by 

use of the applet version of the Simulator. Instructors can also provide additional
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exercises to supplement those from the textbook, giving students even more oppor­

tunities to improve their knowledge of regular languages and finite state automata. 

Through use of the comparison feature, students will be able to receive immediate 

feedback while doing these exercises. Such immediate feedback is impractical using 

traditional methods.

Grading Homework

One way to gauge the usefulness of a piece of software is to observe whether 

it is used for purposes that were not envisioned when it was originally designed. 

One such unanticipated application of the FSA Simulator that has emerged is in 

evaluating homework assignments and quizzes that are completed by hand (i.e.. 

without access to the FSA Simulator). Homework assignments for course modules 

on regular languages, finite state automata, and regular expressions can be very 

difficult to grade. For example, asking students to construct an FSA that recognizes 

a nontrivial regular language can result in many different complex, but correct, 

solutions. It can be quite difficult for a human to discern whether or not a complex 

FSA really does recognize the language specified by a problem.

The FSA Simulator's ability to compare FSAs can come to the rescue in these 

situations. The comparison process can reveal if the students’ solutions are indeed 

correct. If they are not. the comparison process will reveal a string that demon­

strates places where the students' solutions diverge.
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Hypertextbooks

Although many animation systems, including the FSA Simulator, axe relatively 

simple to install and configure for classroom use. many instructors do not have time 

to locate, learn, set up. and integrate the different pieces of animation software 

that could be used in a theory of computation course. As mentioned in Chapter 

1. hypertextbooks are one solution to this problem. All of the software and other 

materials used in a hypertextbook can be packaged onto a single CD-ROM that has 

no installation or configuration requirements other than a modern web browser and 

a recent version of the Java plug-in.

The members of the Webworks Laboratory are building an integrated hyper- 

textbook for the theory of computation. The hypertextbook, entitled Snapshots of 

the Theory of Computation, will eventually contain material about all of the topics 

covered in a standard undergraduate theory' course, from finite state automata to 

NP-completeness. Rather than being structured like a traditional textbook. Snap­

shots is a set of hyperlinked modules. Each module has material at three levels of 

difficulty. The difficulty levels are noted using the international trail marking sys­

tem for ski areas (see Figure 3.14). Green circles indicate the easiest route through 

the hypertextbook. At this level, most of the explanations are at an intuitive level 

and incorporate liberal use of animation applets, such as the FSA Simulator. Blue 

squares denote more difficult intermediate material which still makes use of anima­

tion applets, but at a reduced level. Black diamonds mark advanced mathematical 

treatment of the material with much less use of animation applets (assuming that 

students visiting the material at this level do not need much in the way of visual, 

intuitive explanations).

Throughout Snapshots, Java applets are embedded within the text to animate
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Figure 3.14: Ski Trail Marking System

concepts as they are discussed (see Figure 3.15). Sometimes the applets are simply 

used to demonstrate a concept. At other times, they provide exercises to give 

students an opportunity to apply what they have learned.

Conclusion

The FSA Simulator represents a new breed of active learning software for the 

theory of computation. It can be integrated into courses in many ways and provides 

active learning features that are not available in other FSA animators. Thus, the 

FSA Simulator provides an important base for the further development of active 

learning software for teaching the theory of computation. Information and expertise 

acquired during the development of the FSA Simulator will allow animations of other 

models of computation, such as pushdown automata and Turing machines, to be 

developed relatively quickly.
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N ondeterm in istic  F inite S ta le  A utom ate

As a diagram, a nondeterministic finite state automaton looks no different than a 
deterministic finite state automaton. It is simply a directed, labeled graph. The only 
difference is that there can be more than one arrow leading from a state with the same 
(the nondeterminism).

Example 1.

There are many ways to visualize an nfa. One is to think of the nfa as having each po: 
state it may be in colored a particular way. As the next input symbol is processed, the 
currently colored states are uncolored, and the next states are colored according to ho 
each currently colored state responds to the input Following is an example of an 
determines whether an arbitrary binary string ends in with 101 or 110.

nfath

o. I

■ O '—©

Notice how nondeterminism is used. Each time the automaton sees a 1 while in the fir

Figure 3.15: The FSA Simulator Applet Embedded in Snapshots
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CHAPTER 4 

FSA SIMULATOR INTERNALS 

Development History

The FSA Simulator began as a "proof of concept" project for the WebLab 

Project (now the Webworks Laboratory) at Montana State University. The original 

scope of the project was merely to demonstrate the feasibility of using Java applets 

to animate concepts in the theory of computation for teaching and active learning. 

Creation of the first version of the Simulator also served as an opportunity for the 

author to sharpen his Java programming skills. When this initial version of the 

Simulator (see Figure 4.1) was completed, its potential was recognized and plans 

were made to redesign the software and add new features.

The second version of the FSA Simulator adopted many of the features found 

in animation packages described in the literature review while incorporating as­

pects found nowhere else. The architecture of the FSA Simulator was completely 

redesigned to be more flexible and powerful. Everything from the data file format 

to the graphical interface was enhanced and improved.

Even at this stage, the purpose of the FSA Simulator was limited to being a 

standard automaton simulation that allowed state machines to be created, modi­

fied. and executed, but nothing to support more advanced teaching and learning. 

Inspiration suddenly struck as the author prepared for comprehensive exams. It be­

came evident that by applying the closure properties of regular languages, it would 

be possible to algorithmically compare the language of one FSA to the language
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of another FSA. That is. algorithms could be developed to determine whether two 

FSAs recognized the same language, and. if not. determine where the two languages 

differed. Thus, the FSA comparison feature (see page 51) was bom. The FSA Sim­

ulator was transformed from a routine automaton simulator into a unique tool that 

could actively guide students through exercises toward a correct solution.

The creation of the FSA comparison feature opened the door for many new uses 

of the FSA Simulator (see Chapter 6). The remainder of this chapter will give a 

detailed description of the FSA Simulator's development and of the architecture 

that makes these exciting new capabilities possible.

Version 1

The first version of the FSA Simulator had many problems. Since development 

began shortly after the release of the first version of the Java programming language, 

the graphical interface was built using the relatively primitive graphics applications 

programming interface (API) available in Java 1.0’s Abstract Windowing Toolkit 

(AWT). The limitations of the AWT resulted in poor-quality graphics for the user 

interface. The edges of figures in the state diagrams were ragged and the animation 

was slow and jerky. The slow execution speed of the first generation of Java virtual 

machines also contributed to the Simulator's performance problems.

The initial version of the FSA Simulator contained many deficiencies in its in­

ternal architecture. The code for displaying an FSA’s state diagram was closely 

intertwined with the Simulator’s interned model of the FSA. This made modifica­

tion of the software difficult. Changes and bug fixes would often cause new problems. 

Addition of new features and alternative views of the FSA would have been a long, 

difficult process within the original design structure.
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Figure 4.1: Version 1 of the FSA Simulator

The file format for saved FSAs had similar problems. The code for saving an 

FSA to a file was also mixed into the code for the internal FSA model. The files were 

saved as binary data that was specific to the Java virtual machine’s representation 

of basic data structures. This limited the usefulness of saved FSAs. The files could 

only be used by Java programs and any changes to the way in which the Java virtual 

machine represented primitive data types would have prevented the files from being 

loaded by future versions of the FSA Simulator.

Further, although some support existed for nondeterminism in the first version
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of the FSA Simulator, it was quite primitive and unreliable. Attempts to execute 

a nondeterministic FSA often resulted in erratic behavior and could even crash the 

application.

Version 2

In the spirit of Fred Brooks' rule, "plan to throw one away" [18], the second 

version of the FSA Simulator was completely redesigned and rewritten in order to 

overcome the design flaws of the first version [15]. The major goals of the rewrite 

were to decouple the internal model of the FSA from its graphical and file format 

representations and to take advantage of new features available in Java 2. These 

changes were certain to make the FSA Simulator more robust and allow it to be 

integrated into a variety of teaching and learning resources more easily.

Separating the internal representation of the automaton from its graphical rep­

resentation was a particularly important goal of the redesign. Besides making the 

source code easier to write and maintain, this change would also allow alternative 

graphical representations of an automaton (for example, as a table rather than a 

graph) to be developed. This objective was accomplished using a Model-View- 

Controller (MVC) [42] design. In the MVC paradigm, the internal objects that 

represent a structure (the model) are completely separate from the the objects that 

present a representation of them (the view). All communication between the model 

and the view is accomplished through a well-defined interface. In the case of the 

FSA Simulator, the internal model of the automaton sends out event messages as 

modifications occur. The graphical representation objects register to listen for these 

events and update their views as necessary. The graphical representation classes 

also act as controllers, converting mouse and keyboard events into modifications of
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the model.

This fundamental change resulted in a layered structure for the FSA Simulator 

(see Figure 4.2). At the center of these layers are the objects that make up the 

internal model of an FSA. All of the details of the FSA's structure are stored in 

these objects. Any changes to the FSA must be done through these objects. Other 

objects that need to be notified when some part of the FSA changes must register 

themselves as “listeners" to receive notification when changes occur. Thus, adding a 

new graphical representation is much simplified because modification of the internal 

data model is not required.

In its default configuration, the FSA Simulator consists of three main layers of 

objects. At the top is the GUI layer, which renders a graphical representation of 

the FSA. The next layer below it is the internal model. Under the internal model 

layer is a set of objects that maintains a Java Document Object Model (JDOM) 

[39] tree to be used if an FSA is loaded from or saved to a file. Between these 

three layers are relatively thin layers of adapter classes that translate events from 

one layer into actions in the next. Thus. GUI events such as mouse clicks and key 

presses are passed to objects which convert the events into method calls that modify 

the internal model. Changes to the internal model proauce events that are passed 

back up to a translator object that converts them into c o m m a n d s that modify the 

rendering of the graphical representation. Internal model modifications are also 

passed down to the JDOM layer which causes the tree structure to be modified to 

reflect the modified structure of the FSA. When the user directs the program to 

save the current FSA to a file, the JDOM tree is able to write out the structure of 

the FSA to an XML file with a single method call.
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Figure 4.2: The Architecture of Version 2.
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Internals

Graphical Representation

After evaluation of several different graphical frameworks, the Diva toolkit [31], 

developed at the University of Califomia-Berkeley. was chosen for building the de­

fault graphical representation of the FSA Simulator. Diva takes advantage of the 

Java2D API that was added to Java 2 [2]. Java2D offers advanced graphics features 

such as antialiasing (which makes the state diagram appeax sharper and smoother), 

automatic double buffering (which contributes to smoother animation), and timers 

(for scheduling animation events). The Diva toolkit also provides important graph 

display classes necessary for constructing the state diagrams used to display FSAs.

Although it is similar to other FSA simulators, the FSA Simulator's graphical 

interface has some features that distinguish it from other automaton simulators. 

Much attention was devoted to the user interface of the FSA Simulator to ensure 

that student learning is enhanced. The most obvious difference is in the animation 

of the execution of an automaton. Rather than having the graphical representation 

of an FSA switch instantaneously from one state to the next during a state tran­

sition. as described earlier, a solid, colored circle identifying the current state of 

the machine moves smoothly along the transition arrow from the current state to 

the next state, clearly showing which transition is followed during a state change. 

This feature was implemented based on observations that students are better able 

to follow state changes in any type of animation model when smooth motion is 

used [76]. In addition, the state diagrams that represent the FSAs were designed 

to look as much like traditional diagrams found in textbooks as possible. Further, 

all construction and modification of FSA state diagrams were designed to be done
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o. i

Figure 4.3: A nondeterministic FSA in Version 2 of the FSA Simulator

without requiring switching between different editing modes. Transitions with end­

points that are connected to the same pair of states were programmed to curve 

away from each other to prevent confusion. Also, both endpoints of the transition 

arrowrs were designed to allow them to be moved from one state to another.

X ondet erminism

Support for nondeterminism was greatly improved in the new version of the FSA 

Simulator. FSAs can be constructed with empty-string transitions as well as tra­

ditional nondeterministic transitions. Nondeterministic execution is represented by 

having multiple solid circles of the same color trace execution paths simultaneously 

on nondeterministic branches (see Figure 4.3). If any one of the currently active 

execution paths comes to a dead end, the colored circle representing it stops, turns 

gray, and then vanishes when the next step begins.
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Nondeterminism is often a topic that students have difficulty understanding. 

It is also difficult to illustrate nondeterminism in a classroom using traditional 

static diagrams. The Simulator's method of animating nondeterminism can be 

especially helpful for explaining nondeterminism. particularly when explaining the 

standard proof by construction that there is an equivalent deterministic FSA for 

even- nondeterministic FSA. Using the FSA Simulator, an instructor can more 

easily illustrate how a combination of states in the nondeterministic FSA can be 

represented with a single state in the new deterministic FSA.

File Format

One significant (and unique as far as the author knows) improvement in the 

FSA animator is the file format used for storing FSAs. To overcome the problems 

inherent in the original binary file format, a new format using Extensible Markup 

Language (XML) [81] was developed. XML is a standard developed by the World 

Wide Web Consortium (W3C) for representing structured data in plain text files. 

The structure of an XML file looks similar to the HTML files that are used for web 

pages. The data is structured as a series of nested opening and closing "tags” . Data 

can be included as named attributes embedded within the opening tag. or as text 

between the opening and closing tag.

There are many advantages to using XML for data files. Since XML files have 

a standard format, there are XML parsers for nearly every programming language 

in use today. XML files can be transferred from platform to platform and from 

application to application without modification. Since they are plain text, XML 

files can be created, edited, and read by humans using only a text editor, yet 

computer applications can easily manipulate XML data as well.
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The creation of an XML file format for the FSA Simulator separated the struc­

ture of the FSA data file from the FSA Simulator's implementation details. Develop­

ers of other applications who are familiar with the structure of the FSA Simulator's 

XML data files will be able to make use of the data without ever having to see the 

FSA Simulator's source code. There is no part of the file format that is specific 

to the features of the FSA Simulator. Any data that are outside of the essential 

structure of an FSA. for example, the positions of the circles that represent states 

in the state diagram panel, are encoded in generic "property" tags that can be used 

for application-specific data. Applications that are interested only in the FSA can 

safely ignore “property" tags without losing any vital information about the FSA. 

See Appendix A for the FSA file definition and an example FSA file.

Using the new MVC architecture and the JDOM XML library- [39]. a new file 

framework was created that updates information as the structure of the FSA is 

changed. At any point during the execution of the program, the structure of the 

current FSA is ready to be w-ritten to disk as an XML file.

W ith the new architecture in place, adding new output formats is also much 

simplified and does not require modification of other parts of the system. It is now 

possible to add code that can save FSA descriptions to destinations other than files 

on a local disk. For example. FSA descriptions could be saved to XML-enabled 

databases or to servers on a network using the various web services protocols which 

are now being developed.

Alphabets

In order to reinforce the concept of an alphabet, users must now specify a specific 

alphabet for every automaton built. All transitions and input strings are restricted
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to symbols in the alphabet.

FSA Comparison

An interesting and unique property of FSAs is that it is possible to detect 

whether two of them recognize the same language. This is possible because regular 

languages are closed under complementation and intersection [44]. An algorithm 

exists which, when given an FSA as input, will construct a new FSA that recognizes 

the complement of the language of the original FSA. There is also an algorithm for 

constructing an FSA that recognizes the intersection of the languages recognized 

by a given pair of FSAs [37].

To determine if two FSAs. FSAi  and F S A 2 . recognize the same language, one 

can first construct two new FSAs that recognize the complements of the languages 

of F S A t and F SA 2. FSAi  and FS.4_> respectively. Applying the intersection algo­

rithm to F S A  1 and F S A 2 will produce F S A lr-} which recognizes the set of strings 

that are in the language of FSAi .  but not in the language of F S A •>. Going the 

other direction, applying the intersection algorithm to F S A 2 and FSAi  will pro­

duce FSAjr:,  which recognizes the set of strings that are in the language of F S A  >. 

but not in the language of FSAi .  Notice that if FS.4ln2 accepts any strings, these 

strings are also accepted by F5.4! but not F S A 2 (therefore. F S A i  and F S A 2 rec­

ognize different languages). A similar statement can be made about F S A jr2. To 

find whether either FS .4Ir2 or FS.4yn2 accepts any strings, it is simply a matter 

of doing a depth-first search along the transitions from the start state in both au­

tomata. looking for a final state. If a final state is found in one of these searches, 

that automaton will accept some string. If neither FS .4 ln2 nor FS.4yn2 accept 

any strings, then the two original automata. FSAi  and F S A 2. recognize the same
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language.

The second version of the FSA Simulator makes use of these algorithms to 

provide exercises that give feedback to students. A target FSA. F S A t . constructed 

by the author of the exercise, is loaded into the Simulator in the background when 

the exercise applet is started. The student is instructed to build an FSA that 

recognizes a given language (the same language that F S A t  recognizes). When the 

student thinks the task has been accomplished, the Compare button can be clicked, 

which causes the Simulator to compare the student's FSA. F S A s . to F S A t -

At this point, using the algorithms described above, the Simulator first con­

structs F S A t  and FSAs-  which recognize the complementary languages of FS A r  

and F S A s  respectively. Then, to check if FSA s  accepts any strings that the FS A t 

does not. F S A snf  is constructed. A depth-first search is then performed on F S A Snf  

to determine if it accepts any strings. As the search is performed, a string is built 

from symbols associated with each transition that is traversed. If a final state is 

found, the string that was constructed during the search will be one of the strings in 

the language of F S A Snf .  In this case, a dialog box pops up telling the student that 

the constructed FSA (FSAs)  accepts a string that is not in the language given at 

the beginning of the exercise and displays the example string that was constructed.

If F S A s  does not accept any strings that F S A t  does not accept, the Simulator 

then checks for strings that are not accepted by F S A s  but are accepted by F S A t  

by creating FSA-§nT and searching for a final state as described for F S A Snf .  If a 

string is found that FSAgnT accepts, a dialog box pops up telling the student that 

F S A s  does not accept a string that is in the language described in the exercise and 

displays the example string that was constructed during the search.

If it is found that no strings are accepted by either F S A Srf  or FSA-§riT. a dialog
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box informs the student that the constructed FSA is correct.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

CHAPTER 5 

EVALUATION 

Goals

Evaluation is an important issue to consider when developing interactive visual­

ization tools for education. It is pointless to use a tool that does not have a positive 

effect on students' learning. The question usually asked when discussing the effec­

tiveness of a new teaching and learning resource is. "Does it work?" This question 

is too general to be useful. There are many ways in which visualization software can 

provide benefits in a learning environment. More useful specific questions include:

1. Does the resource, when used by itself as an aid in teaching and learning the 

specific topic for which it was created, work better than traditional methods?

As mentioned on page 35. a few studies have found that students using visual­

izations have not performed better than those who did not have access to the 

visualizations [27. 69]. However, other studies have shown that students do 

learn better if they are actively involved in creating the visualization (rather 

than passively watching a visualization) [77]. More work needs to be done 

to determine whether active learning visualizations, in which students partic­

ipate in setting up and directing the visualization, encourage learning more 

than activities that do not involve visualization systems.

2. Does the resource, when used by itself as an aid for teaching and learning, 

work at least as well as traditional methods?
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This question is important, but often overlooked in the literature. As distance 

and self-study learning become more prevalent, resources will need to be cre­

ated to assist students in environments where traditional teaching methods 

can not be used.

3. Do students learn better them with traditional methods when visualizations 

are integrated seamlessly into a comprehensive, computer-based learning en­

vironment that is the primary resource for a course?

This question has not yet been addressed in the literature as no such inte­

grated resources currently exist. Although many visualization systems are 

available as stand-alone systems, some of them very good, very few instruc­

tors or students actually use them. This phenomenon may be caused by a 

number of factors including [15]:

•  Downloading, installing, and maintaining visualization software often re­

quires too much time from instructors, who are often overworked due to 

a lack of faculty and large enrollments.

•  Many visualization packages are dependent on a specific platform. This 

will automatically reduce the number of potential users.

•  Visualization software is often designed as a stand-alone tool to teach 

a specific concept. In order to provide a complete set of visualizations 

for a course, instructors must pull bits and pieces together from multiple 

sources. As mentioned above, many instructors do not have time to 

devote to such tasks.

Many of these difficulties would be eliminated if a comprehensive, integrated 

teaching and learning resource such as a "hypertextbook" [15] were available.
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The work presented here has been designed to be included in a "hypertext­

book" on the theory of computation. When that occurs, formal evaluations 

can be done to answer this question.

4. Do students learn at least as well as with traditional methods when given a 

comprehensive, computer-based learning resource that seamlessly integrates 

active learning visualizations?

Once again, this question is important for situations such as distance learning 

and self-study when faculty with the proper expertise are not available to 

teach a traditional course.

5. Do students perceive that they are receiving a better learning experience when 

active learning visualizations are used to illustrate important concepts? Are 

students more excited, more motivated, and more eager to learn?

These questions may initially seem worthless if students are not actually im­

proving their understanding of a topic. However, increases in students' moti­

vation and enjoyment of computer science are also benefits that may indirectly 

lead to improved learning. If active learning visualizations make difficult top­

ics more fun and interesting, students may be less intimidated and willing to 

continue to try to understand the topic despite its difficulty. Also, if such sys­

tems do inspire students to study computer science, they may also encourage 

more underrepresented groups (e.g.. women) to enter the field.

Each of the above questions also contain many dimensions that should be ex­

plored. For example, how does the length and frequency of use of visualization 

software affect learning? How’ does use of visualization software affect short-term 

and long-term retention? How readily do students turn to active learning visual­
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izations rather than traditional static resources, such as textbooks, when they are 

studying outside of the classroom? The evaluation of active learning visualizations 

is a rich but virtually unexplored area of research that is important for the future 

of computer science education.

Preliminary' Evaluations

The primary objective of this dissertation was to determine the feasibility of 

creating cross-platform active learning software as part of a comprehensive resource 

for teaching the theory of computation via the World Wide Web. This objective has 

been accomplished. A secondary objective was to begin an evaluation of the effects 

of this software on student learning, as discussed in the previous section. Since 

evaluation was a secondary' objective, the author has not been able to devote as 

much time to it as is necessary- to produce many definite conclusions. Nevertheless, 

two preliminary evaluations have been completed that will be used as a basis for 

further research by the author.

The two preliminary- evaluations were conducted in computer science labs during 

the spring semester of 2002. Both experiments demonstrated that use of the FSA 

Simulator can significantly improve students’ performance on FSA construction 

exercises and the results of the second evaluation suggest that use of the Simulator 

may increase students’ success at constructing FSAs without the assistance of the 

Simulator applet.
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Experiment 1

Subjects

The first experiment was performed in a first-year computer science course. CS 

221. at Montana State University. This course is mainly taken by computer science 

and computer engineering students during the second semester of their first year, 

after having taken an introductory programming class [54].

Before the students began the lab assignment, they were asked to fill out a form 

to provide some demographic information about themselves, so that the test and 

control groups could be compared for significant differences. The form asked for 

each student's age. sex. major, year in college, approximate grade point average, 

and standardized test scores. Students were also asked whether they were familiar 

with terms related to the subject of the lab. such as finite state automaton and 

regular expression, to determine whether they had had any previous exposure to 

the topic. To protect the students' privacy, the information provided in these forms 

was associated only with a number assigned to the student, not with a name.

Fifty-two students participated in the lab. The average age of the students was 

20 . 75% were freshmen. 15% sophomores. 8% juniors, and 2% seniors. 63% of 

the students were computer science majors, 35% computer engineering, and 2% 

(1 student) architecture. Males made up 98% of the class, which is much higher 

than national averages [28]. Most of the students were white, although a few non- 

white students participated. Overall the students tended to be white males near 

the traditional age of first-year college students.
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Design

There were three sections of the lab. each lasting two hours. The students were 

divided into test and control groups by assigning each section to be in either the 

test or control group. The first and third sections, a total of 28 students, made up 

the test group. The second section, with 24 students, was the control group. All of 

the female students were in the test group.

In the test group. 71% of the students were computer science majors. 25% were 

computer engineering majors, and one student (4%) was studying architecture. 

The control group was alm ost evenly divided between computer science (54%) and 

computer engineering (46%) majors.

The average age in the test group was 20.29 with a standard deviation of 4.13. 

The average age in the control group was 19.75 with a standard deviation of 2.71. 

The difference was determined to not be statistically significant using a t-test and 

Students Distribution (a =  0.05) [17].

Although some of the students reported ACT or SAT scores, many students 

were not able to report their scores, so that data could not be used to compare the 

two groups.

The students' reported grade point averages were very similar. They were asked 

to choose a GPA range that best described their GPA. The ranges from lowest 

to highest were "less than 2.0,'’ "2.0-2.5/' "2.5-3.0.” "3.0-3.5,” and "3.5-4.0” . To 

compare the GPAs of the two groups, each range was assigned a number: "less than 

2.0” was assigned 1. "2.0-2.5” was assigned 2. and so forth. The average of these 

values for the test group was 3.67 (representing GPAs in the upper part of the range 

2.5-3.0) with a standard deviation of 1.04. The average for the control group was 

3.74 (also representing GPAs in the upper part of the range 2.5-3.0) with a standard
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deviation of 0.81. The difference was not statistically significant (a = 0.05).

Six of the students in the test group and three in the control group reported 

having been exposed to regular language topics previously.

Overall, the demographics of the two groups appear to be equivalent. A more 

controlled way of choosing test and control groups would be preferable, but was not 

practical.

Treatments

The lab exercise was divided into two parts. In the first part, the students read 

through a web-based tutorial based on material from the Webworks Laboratory's 

theory' of computation hypertextbook [15]. Examples in the test group's tutorial 

included the FSA Simulator applet. In place of the applet, the control group viewed 

static images that conveyed equivalent information.

While they were reading through the tutorial, the students completed four ex­

ercises. Exercise 1 asked basic questions about a finite state automaton (FSA) 

represented as a state diagram. The students were asked to identify the start state, 

final states, and alphabet of the FSA. They were also asked to list the sequence of 

states the FSA would enter while processing a particular string, and to determine 

whether the FSA would accept or reject 4 different strings. Exercise 2 asked the 

students to construct a state diagram of an FSA from its formal description. In 

Exercise 3, the students were asked to construct an FSA that recognized identifiers 

for a programming language. Finally, in Exercise 4, the students were asked to 

construct an FSA for recognizing floating point literals.

The test group was allowed to  use the FSA Simulator (with the comparison 

feature enabled when applicable) during all of the exercises. Images of solutions
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to the exercises were made available to the control group to use in checking their 

solutions as links from the exercise pages. Both groups were asked to write down 

their answers to the exercises on a separate sheet of paper.

The second part of the lab was a paper-and-pencil test with problems similar 

to the exercises in the tutorial. Problem 1 of the test was similar to Exercise 1. 

but two additional questions were added: The students were also asked to identify 

a string that would be accepted and a string that would be rejected by the FSA. 

For Problem 2. the students were asked to write a formal description of the FSA 

depicted in Problem 1. This was a bad idea, since the students did not have access 

to a description of the formal definition. The answers to Problem 2 were not graded. 

Problems 3-5 asked the students to draw state diagrams for FSAs which recognized 

specific languages of binary strings. For Problem 3. the language was strings that 

start with 1 and end with 0. The language for Problem 4 was strings containing at 

least three Is. Problem 5's language was strings that do not contain the substring 

110 .

All students took the same test without reference to any of the online materials 

from the tutorial. The lab had to be completed within 110 minutes. If students 

were not done with the tutorial within 80 minutes, they were asked to stop where 

they were and take the test during the last 30 minutes.

Observations

The students in the test group spent much more time on the lab than the 

students in the control group. It was observed that some of the test groups students 

encountered difficulties while learning the FSA Simulator’s user interface. Students 

in the test group spent more time working on the exercises than their classmates
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in the control group. This was attributed to the test group's need to learn how to 

use the applet, some bugs in the applet that forced some students to restart in the 

middle of an exercise, and their ability to receive feedback about their solutions, 

which encouraged them to keep working on a solution until it was correct. Therefore, 

many of the students in the test group did not have sufficient time to work through 

all of the exercises. Nearly a third of them (8 of 28) were not able to begin the last 

exercise. The control group, on the other hand, completed the exercises (although 

not always correctly) and the test much more quickly. All of the students in the 

control group completed the lab in less than 90 minutes.

Many of the students in the test group appeared to enjoy working with the FSA 

Simulator applet. The ability to check the accuracy of solutions and receive hints 

when incorrect solutions were submitted made the exercises seem like a puzzle game. 

A few of the students even competed with each other to see who could complete 

exercises first. On the other hand, the control group was much more subdued. 

The students in this group asked fewer questions and appeared to be much less 

enthusiastic about the lab.

Some of the students in the test group tended to build FSAs with a large number 

of states when using the comparison feature. Rather than reconsidering the design 

of their FSAs. some students would keep adding more states to handle strings in 

the target language that their FSA did not accept. (It may help to discourage such 

behavior by allowing the exercise author to specify a maximum number of states 

that can be created or a  maximum number of times that the comparison button 

can be used.)
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Question Group
Average

Score
Standard
Deviation

One-tailed t-value
(a  =  0.05)

Exercise 1 Test 5.1 0.994 -1.123
Control 5.5 1.504

Problem 1 Test 7.9 1.571 -1.449Control 8.5 1.641
Table 5.1: Experiment 1 Resu ts for Exercise 1 and Problem 1

Question Group
Number
Correct

Percent
Correct

Fisher Test p-value (a =  0.05) 
★-significant result

Exercise 2 Test 16 of 28 577c 0.1281Control 9 of 24 38%

Exercise 3 Test 16 of 28 57% 3.425 x 10~5*Control 1 of 24 4%

Exercise 4 Test 10 of 28 36% 8.295 x 10-4*Control 0 of 24 0%

Problem 3 Test 8 of 28 29% 0.5111Control 6 of 24 25%

Problem 4 Test 15 of 28 54% 0.6258Control 13 of 24 54%

Problem 5 Test 1 of 28 4% 0.4413Control 2 of 24 8%
Table 5.2: Experiment 1 Results for Exercises 2-4 and Problems 3-5

Measures

Each group's scores on the exercises and problems are summarized in Tables 5.1 

and 5.2 and in Figures 5.1, 5.2, 5.3, and 5.4. Although the students in the control 

group tended to do better on Exercise 1, the test group was much more successful 

than the control group at completing Exercises 2-4, with a significant difference on 

Exercises 3 and 4.
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Experiment 1, Exercise 1
All Students
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Figure 5.1: Experiment 1 Results for Exercise 1
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Figure 5.2: Experiment 1 Results for Exercises 2-4
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Experiment 1, Problem 1
All Students
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Figure 5.3: Experiment 1 Results for Problem 1

Experiment 1, Problems 3-5 
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Figure 5.4: Experiment 1 Results for Problems 3-5
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Analysis

Exercise Results The original goal of the comparison feature was to guide stu­

dents to the successful completion of exercises (see page 51). The data from this 

experiment clearly demonstrates tha t the comparison feature does improve student 

performance on exercises. Although the control group appeared to have a slight 

edge when identifying the parts of a finite state automaton, on exercises that re­

quired FSAs to be constructed from a language description, the test group had a 

definite advantage. The percentage of students in the control group who success­

fully completed exercises dropped steeply as the exercises increased in difficulty. In 

contrast, the percentage of successful students in the test group started out high 

in Exercise 2. remained the same for Exercise 3, and dropped a relatively small 

amount (compared to the control group) on Exercise 4. The drop on Exercise 4 

may be explained, in part, by time limitations. As mentioned earlier, students who 

used the FSA Simulator applet spent more time working on the exercises them those 

who did not. Many were not able to  complete all of the exercises within the 110- 

minute limit. The test group’s success rate on Exercise 4 might have been higher if 

the students could have worked on the exercises for a longer period of time.

Although the success rates for the test group were higher than the control group 

for Exercises 2-4, they were lower than original expectations. It may be that more 

than 57% of the students were able to complete the exercises, but some of the 

students may have made mistakes when transferring the state diagram from the 

computer screen to their worksheets. In the future, evaluations should use a com­

pletely electronic system for the test group to prevent such problems.
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Test Results The test results of Experiment 1 were not as encouraging as the 

exercise results. The control group continued to have an edge on the identification 

portions of Problem 1 and the results for the two groups on Problems 3-5 were 

essentially the same. The advantages that the test group possessed for the exercises 

did not carry over when the extra support was removed. On the other hand, use of 

the FSA Simulator applet did not appear to be a disadvantage either.

Experiment 2

Subjects

The experiment lab was performed in a second-year computer science course. 

CS 223. at Montana State University. This course is usually taken by computer 

science majors during the second semester of their second year. Some computer 

engineering students also take this class as a professional elective [54],

Forty-four students participated in the lab. The average age of the students 

was 22 (standard deviation 3.5). 45% were sophomores. 27% juniors. 25% seniors 

and one student (2%) was pursuing a second degree. 86% of the students were 

computer science majors. 9% computer engineering, and 5% (2 students) were from 

other majors. Females made up 14% of the class. Most of the students were white, 

although a few non-white students participated.

Design

There were two sections in this lab. each lasting two hours. The students were 

divided into test and control groups by assigning each section to be either test or
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control. The first section. 17 students, made up the control group. The second 

section, with 27 students, was the test group. As in the first experiment, all of the 

female students were in the test group.

In the test group. 85% of the students were computer science majors. 7% were 

computer engineering majors, and two students (7%) were from other majors. The 

control group was 88% computer science and 12% computer engineering.

The average age in the test group was 21.8 with a standard deviation of 2.3. The 

average age in the control group was 22.6 with a standard deviation of 4.9. The 

difference was not statistically significant (a =  0.05). As in the first experiment, 

not all students reported standardized test scores, so they were not used.

The students' reported GPA range was evaluated as described for Experiment 

1. The average value for the test group was 3.78 (representing a GPA in the upper 

part of the range 2.5-3.0) with a standard deviation of 1.05. The average for the 

control group was 4.11 (representing a GPA in the lower part of the range 3.0-3.5) 

with a standard deviation of 0.99. The difference was not statistically significant 

( q  =0.05).

Ten of the students in this lab (37% of the test group and 59% of the control 

group) reported having been exposed to regular languages topics previously. Many 

of the students were taking or had taken the undergraduate theory of computation 

course. CS 350. The difference in proportion is not significant at the a  = 0.05 level, 

but it appears that the control group may have an advantage over the test group.

Treatments

The lab for Experiment 2 was nearly identical to Experiment 1. The online 

tutorial was modified slightly to correct some typographical errors and to reword
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the questions about the start and final states in Exercise 1. Also, the bugs discovered 

during Experiment 1 (see page 84) were fixed before Experiment 2. Since the labs 

for this class were not as structured as the first lab, the two-hour time limit was 

not as strictly observed.

Measures

Each group s scores on the exercises and problems are summarized in Tables 5.3 

and 5.4 and in Figures 5.5. 5.6. 5.7. and 5.8. As in Experiment 1. the test group 

tended to do better than the control group on the exercises. The test group did 

better than the control group on some of the problems, but not significantly better.

Analysis

Exercises The results for the exercises in Experiment 2 were similar to those 

for Experiment 1. As expected, given their greater experience with the theory of 

computation and computer science in general, the students in both groups had 

higher scores than the students in Experiment 1. The test group had a slight, 

but not significant, edge over the control group on Exercise 1. a larger but still 

not significant advantage in Exercise 2 and significant advantages for Exercises 3-5. 

The control group's performance dropped at a steady rate as the difficulty of the 

exercises increased, while the test group's scores dropped somewhat between 2 and

3, but not drastically. The test group’s scores actually increased slightly from 3 to

4. Although not quite as dramatic as in Experiment 1, the test group clearly had 

an advantage over the control group for the exercises.
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Question Group
Average

Score
Standard
Deviation

One-tailed t-value
(a =  0.05)

Exercise 1 Test 6.7 0.961 0.785Control 6.4 1.176

Problem 1 Test 8.8 0.934 1.431Control 8.4 0.966
Table 5.3: Experiment 2 Resu ts for Exercise 1 and Problem 1

Question Group
Number
Correct

Percent
Correct

Fisher Test p-value (a  =  0.05) 
★-significant result

Exercise 2 Test 20 of 27 74% 0.1331Control 9 of 17 53%

Exercise 3 Test 17 of 27 63% 0.0692Control 6 of 17 35%

Exercise 4 Test 18 of 27 66%
. . . .

0.0017*Control 3 of 17 18%

Problem 3 Test 16 of 27 59% 0.75Control 11 of 17 65%

Problem 4 Test 20 of 27 74% 0.0683Control 8 of 17 47%

Problem 5 Test 2 of 27 7% 0.371Control 0 of 17 0%
Table 5.4: Experiment 2 Results for Exercises 2-4 and Problems 3-5

Test As in the exercises, the students in Experiment 2 scored higher on most 

of the problems on the test, with the exception of Problem 5. which was the most 

difficult. On Problems 1. 3. and 5. there were insignificant differences between the 

two groups. However, the test group did much better than the control group on 

Problem 4. although the difference was not quite large enough to be considered 

statistically significant. This suggests that there may be some minimum amount 

of knowledge needed for the FSA Simulator applet to significantly affect learning. 

Much more evaluation needs to be done to  confirm this hypothesis.
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Experiment 2, Exercise 1
All Students
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Figure 5.5: Experiment 2 Results for Exercise 1

Experiment 2, Exercises 2-4 
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Figure 5.6: Experiment 2 Results for Exercises 2-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

Experiment 1, Problem 1 
All Students
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Figure 5.7: Experiment 2 Results for Problem 1

Experiment 2, Problems 3-5 
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Figure 5.8: Experiment 2 Results for Problems 3-5
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CHAPTER 6 

FUTURE WORK 

Introduction

In the neax term, the goal of this research is to provide active learning animation 

applets for supporting a hypertextbook module on regular languages, finite state 

automata, regular expressions, and regular grammars, the topics usually found in 

the first chapter of many textbooks on the theory of computation. (See Chapter 

1 for a discussion of hvpertextbooks.) The long-term goal of this research is to 

provide all of the active learning animation applets necessary to create a complete 

hypertextbook for an undergraduate theory of computation course. By extension, 

the knowledge and experience gained as these goals are accomplished can then be 

applied to developing similar hypertextbooks for other topics and disciplines. This 

chapter will sketch out a road map of future w’ork that will need to be completed 

in order to accomplish these goals.

Regular Languages Module

The FSA Simulator as it currently stands is a powerful tool for teaching about 

finite state automata, but it is not sufficient support for teaching the other concepts 

normally covered along with finite state autom ata, most notably regular languages, 

regular expressions and regular grammars (which we refer to here as the “regular 

languages module” ). In order to have a comprehensive resource for teaching and
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learning this topic, more work needs to be done.

FSA Simulator Enhancements

Many enhancements can be made to the FSA Simulator to improve its support 

for a regular languages module in a hypertextbook. The flexibility of the Simulator's 

architecture will allow many new features to be added to the software without re­

quiring significant changes to the existing source code. The current implementation 

only scratches the surface of its many possible uses.

Alternate Views One of the important features of many of the algorithm an­

imation packages [19. 75] is the ability to show multiple graphical views of the 

execution of an algorithm. Something similar could be done for the FSA Simulator. 

A common representation of FSAs used in textbooks is as a state transition table, 

which is used to determine which state to change to given the current state and 

a particular input symbol. A table view of the FSA could easily be included in 

addition to the default state diagram view.

A “source code" view could also be added to the Simulator by integrating a 

modified version of the Dynalab program animator [66] that would automatically 

generate source code for a particular FSA. Both of these views would be separate 

software modules that would register to receive events from the internal model of 

the FSA.

Another type of alternate view is a tree view of the execution of a nondeter- 

ministic FSA. As the FSA begins execution, the tree view would start as a single 

node at the root of the tree representing the start state. As the first input symbol 

is processed, successor states would become child nodes of the root. At each step,
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Figure 6.1: Mockup of a tree view

i. of the computation, the combination of the current input symbol with the states 

represented as leaf nodes at level i of the tree is used to determine the next states, 

which now become the leaf nodes at level i +  1. Nondeterministic branches in the 

computation are represented as branches in the tree view. If there are no next states 

possible for a state and input symbol pair at level i, that branch ends at level i. See 

Figure 6.1 for a mockup of a tree view.
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FSA Manipulation Algorithms Like JFLAP and JCT. additions to the FSA 

Simulator should be created to animate the various algorithms that exist for ma­

nipulating FSAs. For example, animations should be included to demonstrate the 

conversion of nondeterministic FSAs to deterministic FSAs. minimization of deter­

ministic FSAs. conversion of regular expressions and regular grammars to FSAs 

(and vice versa), and so on.

Theorems

The most challenging task for the regular languages module of the hypertext­

book would be to devise active learning animations and exercises for teaching the 

proofs and applications of theorems such as the pumping lemma for regular lan­

guages. Ways of illustrating the proof of the pumping lemma itself and its use in 

showing that languages are not regular will be difficult. As mentioned in Chapter 2. 

Susan Rodger's PumpLemma software was an interesting- but incomplete-attempt 

at developing such theorem animation software. More effort needs to be devoted to 

this area.

Regular Expressions and Regular Grammars

Since algorithms exist to convert regular expressions and regular grammars to 

FSAs. the FSA comparison features of the Simulator could also be integrated into 

grammar and regular expression animators to create exercises with instant feedback 

as well. A prototype applet for regular expression construction exercises has been 

developed. A project to integrate the FSA comparison code into the Parse Tree 

Applet (see page 30) to produce regular grammar exercises is also planned.
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Automated Grading

Taking the FSA Simulator's ability to assist when grading homework a step 

further (see page 59). homework assignments and some testing could be completely 

automated using a client-server architecture. The client program, which could be 

an applet in a browser or a stand-alone application, would only need the FSA. 

regular expression, or grammar building program and information about which 

problem was being solved and how to contact the server. When a student wanted 

to check an answer or submit an assignment, the student could press a button and 

a remote procedure call would transmit information about the student’s solution to 

the server. The server would process the information and store the results for later 

viewing by the instructor. The server could also send a response to the student 

depending on what kind of assignment is being done. If this is a learning exercise, 

an indication of whether the submitted solution was correct or an acknowledgement 

that an assignment has been submitted would be returned to the client.

If set up properly with a large library of problems to assign, grading of homework 

assignments could be almost entirely automated. Since potential solutions would 

be evaluated on the server, there would be no danger that students could cheat 

by extracting the solution from a downloaded jar file or by intercepting network 

packets going to or from the server.

Practical Programming

In addition to providing an understanding of the mathematical model it ani­

mates, the FSA Simulator could also be modified to be used as a practical pro­

gramming tool. Software packages already exist to generate Java source code from
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state diagrams [78]. The FSA Simulator (with some modifications) could be used 

as a front-end to one of these packages to allow' students to create useful software 

applications with their "theoretical" knowledge.

Other Hypertextbook Modules

Once a regular languages module is completed, work can begin on modules for 

other topics in the theory of computation. The development of the FSA Simulator 

will allow some of this work to be done with relative ease, but new challenges will 

also be encountered.

Other Models of Computation

Simulators for other models of computation, including pushdown automata and 

Turing machines will need to be developed to complete the planned hypertextbook. 

Much of the FSA Simulator's user interface code can be reused for this purpose, 

although the code for the internal model of these automata will be significantly 

different.

Unlike FSAs. the languages recognized by pushdown automata and Turing ma­

chines can not be compared for equivalence [72]. Thus, construction exercises using 

simulators for these models of computation will not be able to definitely tell the 

student whether the exercise has been successfully completed or not. That, how­

ever. does not mean that no feedback cm  be given. When developing exercises, the 

author of the exercise can provide a set of strings (in and outside of the language) 

with which to test the student’s automaton. A danger of this approach wrould be 

that the student could construct an automaton to accept only the test strings, but
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not the rest of the strings in the target language. It may be possible, however, to 

develop dynamic test string generators that would be resistant to such tactics.

Theorems and Proofs

The theorems and proofs found in other sections of the hypertextbook will be 

even more challenging than those mentioned in Chapter 6. Theorems and proofs 

related to context-free languages can be animated with an enhanced version of the 

Parse Tree Applet. Theorems and proofs related to decidability and tractability 

will be the most challenging. The "Holy Grail" of this line of research would be 

a set of animations that would illustrate problem reductions and the subject of 

NP-Completeness (intractability).

Evaluation

Much more work needs to be done in evaluating how the FSA Simulator affects 

learning. The evaluations done in Chapter 5 were very limited and represent just a 

start. Much more work needs to be done to reach definite conclusions.

The evaluation process needs to be enhanced to improve the quality of the 

results. A larger pool of subjects needs to be found for testing so that better 

selection methods can be used to make the subjects more representative of the target 

student population. In this case, the investigator was aware of which students were 

in the test and control groups when the test results were analyzed. It would be 

better to do a "double blind” study so that the investigator is not aware of which 

subjects are in the test group. Also, the test instruments need to be more carefully 

designed to ensure that they are indeed testing students for the correct information.
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In addition, there are many situations in which the Simulator needs to be evaluated 

other than a laboratory setting.

The results of the second evaluation experiment (see page 89) suggest that stu­

dents may derive more benefit from the FSA Simulator as their knowledge and 

experience increases. An important follow-up evaluation would be to observe use 

of the Simulator as a stand-alone application throughout a theory of computation 

course. How would the FSA Simulator affect learning if students saw it demon­

strated during lectures, used it to complete several homework exercises outside of 

class, and then used it while taking an exam? It would seem that such extensive 

exposure w’ould have a strong positive effect on how well students would understand 

finite state automata, but the results are difficult to predict.

It would also be helpful to do a formal evaluation of students' attitudes toward 

using the Simulator. If it could be shown that use of the FSA Simulator significantly 

increases students' enthusiasm for the theory of computation, that would be a com­

pelling benefit even without an accompanying increase in students' understanding 

of the subject.

Another relevant evaluation would be to study the FSA Simulator's effectiveness 

when used as an integral part of a comprehensive hypertextbook on the theory of 

computation (see page 4). Ultimately, we will want to determine the effect of 

a complete hypertextbook on teaching and learning as compared to traditional 

textbooks.
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Conclusion

The development of the FSA Simulator represents a significant progress in cre­

ating and evaluating active learning animation software to support the teaching and 

learning of the theory of computation. The author has demonstrated that such soft­

ware can be created, that it can be effective, and that students find such software 

more motivating than traditional teaching and learning resources. The door has 

been opened for the development and evaluation of similar software for other topics 

in the theory of computation and also for topics that lend themselves to animation 

in other disciplines.
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DOCUMENT TYPE DEFINITION FOR FSA FILES 

<!— This DTD defines the format of a graph.—>

<! —  ========================================================== — >

<!— fsa  —>
< !  —  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  —  >

<!ELEMENT fsa  (descrip tion , alphabet, s ta te s , i n i t i a l . s t a t e ,  
f in a l_ s ta te s , tr a n s it io n s )>

< ! —  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  — >

<! — alphabet —>
< | —  ========================================================== — >

<! ELEMENT description (#PCDATA)>

<!ELEMENT alphabet (#PCDATA)>

<!ELEMENT sta tes  (s ta te * )>

<! ELEMENT in it ia l_ s ta te  EMPTY>
<!ATTLIST in it ia l_ s ta te  s ta te id  IDREF #REQUIRED>

<!ELEMENT f in a l .s ta te s  EMPTY>
<!ATTLIST fin a l_ sta tes  s ta te id s  CDATA #REQUIRED>

<!ELEMENT tran sition s (tr a n s itio n * )>

< | —  ========================================================== — >

<!— sta te  - —>
< !  —  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  - - >

<!ELEMENT sta te  (property*)>
<!ATTLIST sta te  id ID #REQUIRED>

< !  —  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  — >

<!— tra n sitio n  —>
< !  —  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  - - >
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<!ELEMENT tra n sitio n  (property*)>
<!ATTLIST tra n sitio n  id  ID #REQUIRED

sta te  IDREF #REQUIRED
symbol CDATA #REQUIRED
n ext_state IDREF #REQUIRED>

<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
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EXAMPLE FSA FILE

<?xml version="l.0" encoding="UTF-8"?>
<!DOCTYPE fsa  SYSTEM " fsa .d td M>
<f sa>

d e s c r ip t io n  />
<alphabet>01</alphabet>
<states>

<state id="sO">
<property name="x">75. 14644622802734</property>
<property name="y">110.0</property>
<property name="label">even</property>
<property name="description">Even number of ls</property>  

</state>
<state id="sl">

<property name="x ">289.0</property>
<property name="y">l10.0</property>
<property name="la b e l">odd</property>
<property name="description">Odd number of ls</property>  

</state>
< /sta tes>
< in it ia l_ s ta te  stateid="sO" />
< f in a l.s ta te s  stateids="sO" />
<transitions>

t r a n s it io n  id="eO-l" state="sO" symbol="l" next_state="sl" />
<transition  id="el-0" state="sl" symbol="l" next_state="sO" />
t r a n s it io n  id="e0-0" state="sO" symbol="0" next_state="sO" />
tr a n s it io n  id="el-l"  state="sr' symbol="0" next_state="sl" />

< /tran sition s>
</fsa>
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APPENDIX B 

FSA SIMULATOR DEVELOPMENT INFORMATION
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FSA SIMULATOR DEVELOPMENT INFORMATION

Implementation Language: Java
Number of source code files: 58
Total Physical Source Lines of Code (SLOC): 7.056
Special libraries used: Diva. JDOM. and util.concurrent

F i le  a n d  S L O C  c o u n t s  w e r e  g e n e r a t e d  u s in g  ' S L O C C o u n t '  b y  D a v i d  A .  W h e e le r .
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APPENDIX C 

EVALUATION INSTRUMENTS
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STUDENT INFORMATION SHEET 
Webworks Project Evaluation Lab

Student Information Sheet 
April 16. 2002

This lab will attem pt to teach you about finite state  automata, an impor­
tant concept used throughout computer science. We are evaluating some software 
that is designed to help students learn about finite state automata. Some of 
you will be using the software. Others will be doing traditional pencil-and-paper 
exercises. All of you will take a test at the end of the lab to try to gauge how' 
much you learned about finite state automata during the lab. Please fill out some 
information about yourself below. This information will be kept confidential and 
will only be used for statistical purposes. To help protect your privacy, you have 
been given a number that only your TA will be able to associate with your name. 
N um ber:_____

Sex: Male Female__
Age . . . .
Major: __________________________

Year in College (circle one): Freshman Sophomore Junior Senior Graduate Other 
If you circled Other, please give a brief explanation:

Are you familiar with the terms finite automaton, finite state automaton, fi­
nite state machine, regular language, regular expression, or regular grammar? If 
so. where did you learn about them?

GPA (circle approximate range): 3.5-4.0 3.0-3.5 2.5-3.0 2.0-2.5 <2.0 
ACT/SAT score(s) (if you remember them): ______
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TEST
Webworks Project Evaluation Lab
Finite Automata Test 
April 16. 2002

Number: _____

1.) Answer the questions below using the following state diagram of a finite au­
tomaton:

a.

b.

c.

d.

e.

f.
g-
h.

i.

j-

What is the start state?

What is the set of accept states?

What is the set of input symbols?

What sequence of states does the automaton go through on input aabb? 

What is an example of a string that is accepted?

What is an example of a string that is rejected?

Does it accept the string aabb?

Does it accept the string babb?

Does it accept the string abaab?

Does it accept the string aabaabbaab?

2.) Give the formal description of the finite automaton pictured in Question 1.

3.) Draw a state diagram of a finite automaton that recognizes the language using 
the input symbols {0, 1} where all strings in the language begin with a 1 and 
end with a 0. Examples of strings in this language include 10, 10110, 11100.
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4.) Draw a state diagram of a finite automaton that recognizes the language using 
the input symbols {0. 1} where all strings in the language contain at least 
three Is. Examples of strings in this language include 111. 000101010111. and 
0101010 .

5.) Draw a state diagram of a finite automaton that recognizes the language 
over the alphabet {0. 1} where all strings in the language do not contain the 
substring 110. Examples of strings in this language include 0. 1. 00011. 11. 
and 010101.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


